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Abstract: Analysis of visual texture is important for many key steps in early vision. We study 10 
visual sensitivity to image statistics in three families of textures that include multiple gray 11 
levels and correlations in two spatial dimensions. Sensitivities to positive and negative 12 
correlations are approximately independent of correlation sign, and signals from different 13 
kinds of correlations combine quadratically. We build a computational model, fully 14 
constrained by prior studies of sensitivity to uncorrelated textures and black-and-white 15 
textures with spatial correlations. The model accounts for many features of the new data, 16 
including sign-independence, quadratic combination, and the dependence on gray level 17 
distribution. 18 
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1. Introduction 20 

One of the strategies that the visual system uses to grapple with the complexity of analyzing 21 
natural sensory signals is to organize this analysis according to groups of attributes – for 22 
example, orientation, color, motion, and depth [2]. For these classical submodalities of spatial 23 
vision, this organizational strategy has well-recognized anatomical underpinnings, both at the 24 
level of specialization of cortical areas and the tuning properties of their component neurons 25 
[2-6]. 26 

Although the specialization of visual areas and the independence of processing within 27 
submodalities is far from absolute [7-10], it is clear that computational “factoring” is an 28 
important principle. That is, while a neuron may be tuned to more than one submodality of 29 
spatial vision (e.g., its response may depend both on color and orientation), its selectivity can 30 
often be understood by considering one submodality at a time. Conversely, it is rare to find a 31 
neuron whose preferred spatial orientation changes as a function of the chromaticity of the 32 
grating used to probe it. Intuitively, this arrangement is a natural consequence of parallel 33 
visual streams and simplifies the logic needed to read out a pattern of neural activity. 34 

Here, we ask whether this computational principle generalizes to another aspect of spatial 35 
vision – visual texture. There are two ways in which texture differs from the classic 36 
submodalities, and thus, two reasons that this generalization is not a foregone conclusion. 37 
First, the connection between perceptual sensitivities and tuning properties of individual 38 
neurons is likely to be less direct than for the classic submodalities: texture, by its nature, 39 
cannot be signaled by a small number of localized receptive fields, as it is a statistical 40 
characterization of an image across an extended region.  41 

Second, the domain of visual texture is high-dimensional. The reason for this is that any 42 
statistic that measures the joint probability of a set of luminance values in any given spatial 43 
configuration is, potentially, a perceptual dimension for texture, i.e., a parameter for which 44 
visual sensitivity may be tuned. Within this vast range of possibilities, visual sensitivity is 45 
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highly selective – but nevertheless, there are a large number of such image statistics for which 46 
visual sensitivity is substantial. [11-14]. 47 

To address whether computational “factoring” extends to texture, we measure visual 48 
sensitivity to image statistics that incorporate two aspects of texture that are typically studied 49 
separately: the distribution of luminance levels, and the spatial organization of the 50 
correlations. We then construct a model for these sensitivities. The model has the familiar 51 
“back-pocket” structure [15], but each channel of the model posits a specific way in which 52 
analysis of image statistics can be separated into a component that is sensitive to the 53 
distribution of luminance levels, and a component that is sensitive to spatial configuration. 54 
The model’s parameters are then constrained by requiring it to account for two 55 
complementary, pre-existing psychophysical datasets that do not overlap the current study: 56 
sensitivity to differences in the luminance histogram in textures with no spatial structure [14, 57 
16, 17], and sensitivity to differences in spatial configuration in textures with only two 58 
luminance levels [13, 18]. Because of the model’s simple structure, it can be fully constrained 59 
by this requirement, with no free parameters. We find that the model provides an approximate 60 
account of the new psychophysical measurements, in terms of relative sensitivities to different 61 
kinds of image statistics and how different image statistics combine. 62 
2. Materials and methods 63 

Our overall experimental strategy is to use synthetic visual textures to measure visual 64 
sensitivity to image statistics and their combinations.  As in previous work, a texture is 65 
formally defined as an ensemble of infinitely large images, with the requirement that its 66 
statistics can be equivalently estimated either by averaging a single sample over all of space, 67 
or averaging across many examples of a finite patch[18, 19]; our stimuli consist of random 68 
samples drawn from such an ensemble. The textures we consider here are all composed of 69 
monochrome checks, and the statistics we consider are all local correlations, i.e., the average 70 
value, across the ensemble, of a product of luminances of checks at specific relative 71 
displacements. 72 

Despite these restrictions, a practical challenge remains:  the number of image statistics 73 
required to specify a texture is enormous [20, 21].  This challenge, along with a range of 74 
theoretical considerations [18, 22-25], motivates the adoption of the “maximum-entropy” 75 
approach used here:  a small number of image statistics are specified explicitly, and the 76 
texture ensemble is constructed to be as random as possible, given these constraints.   77 

In this work, the constraints are the luminance distribution and correlations of checks 78 
within a 2 2×  neighborhood. We use a 2 2×  region (here, and in previous studies that this 79 
work builds on [13, 18, 26-28]) because it is the smallest region that enables specification of 80 
textures with contours and corners in multiple directions, as well as T-junctions and X-81 
junctions.  82 

This approach provides a practical dimension reduction and also one which, perhaps 83 
surprisingly, is related to the statistics of natural images[24, 25].  Our approach is related to, 84 
but distinct from, the “FRAME” approach to texture synthesis of Zhu et al. [22].  While both 85 
are maximum-entropy approaches, FRAME uses constraints that are neurally-inspired linear 86 
spatial filters applied to the image (and thus, also encompasses the original texton approach of 87 
Julesz [29, 30]); here, the constraints are nonlinear combinations of local luminances.  88 

Psychophysical measurements of sensitivity to individual image statistics and their 89 
combinations were made by using the texture segmentation task introduced by Chubb et al. 90 
[17] and used in many previous studies in our lab [13, 18, 26-28] for black-and-white 91 
textures. Here we describe an extension of this approach to multiple gray levels. We then 92 
detail the psychophysical task, experimental procedure, and data analysis.  Construction of the 93 
textures is detailed in the Supplemental Document (“Specification and construction of 94 
textures”). This construction maintains the maximum-entropy property of the black-and-white 95 
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construction [18]: textures are as random as possible for the image statistics that are specified. 96 
Because of this maximum-entropy property, the textures contain the minimal visual structure 97 
that is required to achieve the specified image statistics.  98 

A portion of the psychophysical data presented in Experiments 1 and 2 has also been 99 
presented in [23], but without many of the experimental details. 100 
2.1 Stimuli for experiments 1 and 2 101 
Experiments 1 and 2 extend the analysis of black-and-white textures [18] to textures with 102 
three luminance levels. In the binary context, we developed a coordinate system for image 103 
statistics that comprehensively described all kinds of correlations within a 2 2×  104 
neighborhood of checks; we now expand the coordinate system to take into account multiple 105 
luminance levels. 106 

In the case of black-and-white textures, image statistics are grouped according to “order”, 107 
i.e., the number of checks that are multiplied to calculate the statistic. For example, the first-108 
order statistic specifies the luminance distribution of individual checks, and the second-order 109 
statistics describe the pairwise correlation of luminances in a pair of checks. There are four 110 
second-order statistics, since there are four kinds of two-check correlations to be considered: 111 
between two checks that are adjacent horizontally, vertically, and along each of the two 112 
diagonals. Each statistic thus specifies the expected value of the product of the luminances of 113 
horizontally adjacent, vertically adjacent, or diagonally adjacent check pairs, averaged across 114 
all samples of the texture. Similarly, there are four third-order statistics, corresponding to the 115 
four ways of selecting three checks within a 2 2×  neighborhood; each statistic specifies the 116 
expected value of the product of three luminances. Finally, there is one fourth-order statistic; 117 
it specifies the correlation among all four checks, i.e., the product of the four luminances.  118 

To extend this scheme to multiple luminance levels, we group image statistics according 119 
to order (the number of checks whose luminances are multiplied), and subdivide each order 120 
according to the spatial configuration of the checks. However, each of these subdivisions now 121 
becomes a family of statistics, as more than one parameter is needed to describe the 122 
correlations among checks in a given configuration (Table 1). Furthermore, each family (other 123 
than first-order) subdivides into independent genera based on the rule that links the luminance 124 
values within each configuration; each genus in turn contains several species -- the individual 125 
statistics that specify the distribution of values created by this rule. (We are borrowing the 126 
standard taxonomic nomenclature – order, family, genus, and species -- for a hierarchy that 127 
arises out of mathematical considerations, but we do not intend to imply a hierarchical 128 
structure for the visual computations). The need for this structure becomes apparent when we 129 
consider three or more luminance levels and statistics of order two or more; these play a key 130 
role in the first two experiments.  131 
First-order statistics 132 

First-order statistics describe the distribution of luminance level values assigned to each 133 
check. When three levels are present, the distribution is specified by the probability that a 134 
check is black (0), gray (1), or white (2). This is a three-element vector, ( (0), (1), (2))p p p , 135 
which we denote as (1)σ . Since the probabilities of black, gray, and white checks must sum to 136 
1, there are two degrees of freedom, so this family requires two image statistics – the 137 
“species” within this family.  138 

We represent these two degrees of freedom as barycentric coordinates (page 216 of [1]) of 139 
a triangular domain (Fig. 1), whose vertices correspond to textures that are all black 140 

(1) (1,0,0)σ =


, all gray (1) (0,1,0)σ =


, or all white (1) (0,0,1)σ =


. The centroid of the 141 



 

4 

triangle, (1) (1/ 3,1/ 3,1/ 3)σ =


, corresponds to a texture in which each gray level occurs 142 
1/3 of the time, and there are no spatial correlations. Note that in the black-and-white case,  143 

 144 
 145 

Table 1. Texture Coordinates 146 

Parameterization of local image statistics in terms of block probabilities. G  (columns 2 through and 5) is the number 147 
of gray levels. For 3G = , the barycentric coordinates correspond to triangular domains, as shown in Figs. 1-3. For 148 

2G = ,  these domains are one-dimensional, and correspond to the image statistics of [18], as shown in the 149 
rightmost column. The rows of the last three columns correspond to families of statistics.  150 
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 151 
there was only one degree of freedom for first-order statistics– since the fraction of black and 152 
white checks must sum to 1. This single degree of freedom was captured by a single 153 
parameter γ , where (1 ) / 2γ+  is the probability of white checks, and (1 ) / 2γ−  is the 154 
probability of black checks.  The final two columns of Table 1 specify the correspondence 155 
between the barycentric coordinates, which apply to any number of gray levels, and the binary 156 
coordinates introduced in [18] and used in previous studies. 157 

 158 
159 

Fig. 1. The domain of the first-order statistic (1)σ  for three-level textures. (1)σ  is a three-element vector whose 

entries correspond to the probability of black, gray, and white checks, respectively. Since these three values must 
sum to 1, they can be considered as barycentric coordinates [1] (page 216) for a triangle. The vertices of the triangle 
are the extreme points of the domain, and correspond to the probability distributions that are all black 

(1) (1,0,0)σ =


, all gray (1) (0,1,0)σ =


, or all white (1) (0,0,1)σ =


. The centroid of the triangle, which 

corresponds to (1)
1 1 1( , , )
3 3 3

σ =


, corresponds to a random texture. 
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 160 
Second-order statistics 161 

For second-order statistics, we detail the family of statistics that describe correlations 162 
between two horizontally-adjacent checks; the other three families of second-order statistics, 163 
which describe correlations in vertical and diagonal directions, are handled similarly. 164 

 There are nine ways that a pair of horizontally-adjacent checks can be colored by three 165 

Fig. 2. The domains of the second-order statistics (1 1)σ  (A) and (1 2)σ  (B) that capture the pairwise 

correlation of luminance levels in horizontally-adjacent checks. Within each domain, a three-element vector 

(1 )sσ  ( 1s =  in panel A, 2s =  in panel B) describes the kind of horizontal correlation. Specifically, the 

elements of (1 )sσ  give the probability distribution of 1 2 (mod3)A sA+ , where 1A  and 2A  are the 

luminance values of the checks (0 for black, 1 for gray, 2 for white). Since the three values of each (1 )sσ  

are a probability distribution and therefore sum to 1, the domain of each vector forms a triangle (as in Fig. 
1). The vertices of the triangle, (1 ) (1,0,0)sσ =



, (1 ) (0,1,0)sσ =


, and (1 ) (0,0,1)sσ =


, 

correspond to textures in 1 2A sA+  is either always 0, always 1, or always 2. Therefore, the textures at the 
vertices have rows that are completely determined by their initial check. Also as in Fig 1. (and as in all other 
triangular domains), the centroid of the triangle corresponds to a random texture. 
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luminance levels. We denote these nine probabilities by ( )1 2p A A , where 1A  and 2A  166 
denote the luminances (0,1, or 2) assigned to the two checks. These nine probabilities must 167 
sum to 1. There are additional constraints implied by the first-order statistics. For example, 168 
summing ( )1 2p A A  over 2A  must yield ( )1p A , and summing ( )1 2p A A  over 1A  169 

must yield ( )2p A . Consequently (see Supplemental Document), there are four degrees of 170 
freedom for the second-order statistics that describe horizontal correlations.  171 

 172 
These four parameters can be grouped into two independent triangular domains (Fig. 2), 173 

the “genera” for this family. The first domain (Fig. 2A) links luminance values by 174 
constraining the distribution of 1 2 (mod3)A A+  (here, as is standard, “mod n ” denotes the 175 
remainder after division by n ); the second (Fig. 2B) links luminance values by constraining 176 
the distribution of 1 22 (mod3)A A+ . In each case, the possible values of the sum are 0, 1, 177 
or 2, so the distribution of the sum is described by a three-element vector of elements that sum 178 
to 1. We denote these vectors as (1 1)σ  for 1 2A A+  and (1 2)σ  for 1 22A A+ : the 179 
subscripts indicate the values of the multipliers and their positions within the 2 2×  180 
neighborhood. As for the first-order statistic (1)σ , the vertices of each triangle correspond to 181 
extremes of the distribution, in which only one value of the sum occurs. The centroid of the 182 
triangle corresponds to the random texture, where each value of the sum has probability 1/ 3 .  183 

Inspection of the texture samples at the vertices of these triangular domains shows that 184 
(1 1)σ  and (1 2)σ  describe quite different aspects of pairwise correlations. For (1 1)σ  (Fig. 185 

2A), each extreme texture consists of two kinds of rows: rows that contain only one 186 
luminance level, and rows that contain alternation of the other two levels. For example, for 187 

(1 1) (1,0,0)σ =


 (bottom vertex of the triangle in Fig. 2A), luminance values of 188 
horizontally-adjacent check pairs must sum to 0 (mod 3).  Thus, the only allowed pairs are 189 
(0,0) , (1, 2) , and (2,1) , so every row is either only black, or alternating white and gray. 190 
Similarly, for (1 1) (0,0,1)σ =



 (top vertex of the triangle in Fig. 2A), luminance values of 191 
horizontally-adjacent checks must sum to 2 (mod 3).  Thus, the allowed pairs are (1,1) , 192 
(2,0) , and (0, 2)  and every row is either only gray, or alternating white and black. 193 

In contrast, the textures for (1 2)σ  have very different characteristics (Fig. 2B). At the 194 
bottom vertex, (1 2) (1,0,0)σ =



 specifies that 1 22A A+  is always equal to 0 (mod 3). This 195 
is equivalent to 1 2 (mod3)A A= , so all rows contain just one luminance level. The other 196 
two vertices of the domain correspond to rows that cycle between the colors. For the right 197 
vertex, (1 2) (0,1,0)σ =



, the coloring (reading from left to right) cycles from white to gray 198 
to black, since (1 2) (0,1,0)σ =



 means that 1 22 1 (mod3)A A+ = , so 199 

2 1 1 (mod3)A A= −  and the allowed pairs are (2,1) , (1,0) , and (0, 2) . For the top 200 
vertex, (1 2) (0,0,1)σ =



, the coloring cycles in the opposite order, since (1 2) (0,0,1)σ =


 201 
means that 1 22 2 (mod3)A A+ = , so 1 2 22 1 (mod3)A A A= + = − , yielding the 202 
allowed pairs (0,1) , (1, 2) , and (2,0) . 203 
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Because the two combinations 1 2A A+  (Fig. 2A) and 1 22A A+  (Fig. 2B) that define the 204 
two genera are linearly independent, their probability distributions can be specified 205 
independently; we exploit this in Experiment 2.  206 

Fig. 3. A. The domain of the third-order statistics 1 1
1

σ 
 
 

  that describes the correlation among the three checks 

1 2

3

A A
A

 
 
 

, according to the distribution of 1 2 3 (mod3)A A A+ + . B: The domain of the fourth-order statistics 1 2
2 1

σ 
 
 

  

that describe correlations of luminance levels among the four checks 1 2

3 4

A A
A A

 
 
 

 according to the distribution of 

1 2 3 42 2 (mod3)A A A A+ + + . Other notations and plotting conventions as in Figs. 1 and 2.  
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The same parameterization strategy can be applied in the other grid directions, yielding a 207 
pair of vectors 1

1

σ 
 
 



 and 1
2

σ 
 
 



 for the genera within the family of correlations between pairs 208 

of checks that are vertically adjacent, the vectors 1
1

σ 
 
 



, 1
2

σ 
 
 



 for the genera within the 209 

family of correlations in the upper-left to lower-right direction, and 1
1

σ 
 
 



, and 1
2

σ 
 
 



 for 210 

the genera within the family of correlations in the upper-right to lower-left direction. We refer 211 
to (1 )sσ  and 1

s

σ 
 
 



 as “cardinal second-order correlations,” and to 1
s

σ 
 
 



 and 1
s
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 as 212 

“diagonal second-order correlations.” Each of these eight genera have two degrees of freedom 213 
(“species”), corresponding to the triangular domain of the distribution of values for its linear 214 
combination. Thus, there are a total of 16 free parameters for the second-order correlations: 215 
four families of vectors (1 )sσ , 1

s

σ 
 
 



, 1
s
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, 1
s

σ 
 
 



, each with two genera ( 1s =  and 216 

2s = ), and these eight vectors each occupy a triangular domain. This is a substantial 217 
expansion compared to the black-and-white case, where there were a total of 4 free 218 
parameters ( _β , |β , \β , and /β ; see Table 1).  219 

We also mention the correspondence to the notation of [23] for second-order statistics: the 220 
subscripts 1 or 2 of σ , used here, correspond to the subscripts +  and −  of β  in [23]. The 221 
numerical notation used here generalizes more readily to multiple gray levels.  222 
Third- and fourth-order statistics 223 

The analogous approach provides a parameterization of third- and fourth-order 224 
correlations. For example, there is a family of third-order statistics corresponding to the 225 

correlations among the three checks in the  -shaped region 

1 2

3

A A
A

 
 
  . This family is 226 

subdivided into four genera, corresponding to the distributions of the four sums 227 
1 2 3 (mod3)A A A+ + , 1 2 32 (mod3)A A A+ + , 1 2 32 (mod 3)A A A+ + , and 228 
1 2 32 2 (mod3)A A A+ + , which are linearly independent. As in the second-order case, 229 

each of these genera is a triangular domain, whose coordinates indicate the probability that the 230 

sum 1 2 2 3 3A s A s A+ +  is 0, 1, or 2.  231 
 232 
Fig. 3A shows the domain parameterized by 1 1

1

σ 
 
 



, the vector that specifies the distribution 233 

of the sum 1 2 3 (mod3)A A A+ + . At the bottom vertex of the triangle, 1 1
1

(1,0,0)σ 
 
 

=


, 234 

so 1 2 3 0 (mod3)A A A+ + = . Since this relationship holds whenever the three kA ’s are 235 

equal, the resulting texture contains -shaped regions uniformly black, gray, or white. At the 236 
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other two vertices, 1 2 3 1 (mod3)A A A+ + =  or 1 2 3 2 (mod 3)A A A+ + = . Every -237 
shaped region therefore must contain at least two different luminance levels. Since there are 238 
four possible orientations of a -shaped region, there are four such families of third-order 239 
statistics (each with the analogous four genera, and two degrees of freedom in each genus), 240 
for a total of 32 independent third-order statistics. 241 
  At fourth-order, there is a single family, corresponding to the entire 2 2×  neighborhood. 242 
Fig. 3B shows an example domain, corresponding to the genus 1 2

2 1

σ 
 
 



, which specifies the 243 

distribution of 1 2 3 42 2 (mod 3)A A A A+ + + . At the bottom vertex of this domain, where 244 

1 2
2 1

(1,0,0)σ 
 
 

=


, the texture has uniform 2 2×  regions of all luminance levels. This is 245 

because 1 2 3 42 2 0 (mod3)A A A A+ + + =  is equivalent to 246 

1 4 2 3 0 (mod3)A A A A+ = + = , which holds for any constant value of the kA . In total, 247 
there are 16 independent fourth-order statistics, corresponding to the eight genera, 1 1

1 1

σ 
 
 



, 248 

1 2
1 1

σ 
 
 



, 1 1
2 1

σ 
 
 



, 1 2
2 1

σ 
 
 



, 1 1
1 2

σ 
 
 



, 1 2
1 2

σ 
 
 



, 1 1
2 2

σ 
 
 



, and 1 2
2 2

σ 
 
 



, each of which is a 249 

triangular domain with two free parameters. For further details and correspondences to the 250 
black-and-white case, see Table 1 and the Supplemental Document (“Specification and 251 
construction of textures”).  252 

 253 
Experiment 1: Individual texture statistics, three luminance levels 254 

Experiment 1 quantifies sensitivity within each of the triangular domains (genera) 255 
described above: one first-order domain (Fig. 1), eight second-order domains (two examples 256 
shown in Fig. 2), 16 third-order domains (an example shown in Fig. 3A), and eight fourth-257 
order domains (an example shown in Fig. 3B). The burden of studying these 33 domains, each 258 
containing two degrees of freedom, may be reduced by recognizing that many of them are 259 
interrelated by spatial symmetries. For example, exchanging horizontal and vertical axes 260 
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1 s
s s
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, etc. 261 
Additional symmetries include mirror-flips and 90-deg rotations. Previous work with black-262 
and-white textures showed that statistics related by these symmetries had the same thresholds 263 
[13], and, in preliminary experiments, we verified that this equivalence held for the cardinal 264 
second-order correlations in the textures with three luminance levels. We therefore limited our 265 
analysis to 12 domains, from which all other domains could be obtained via a symmetry 266 

operation. These domains were: the first-order domain (1)σ
; the second-order domains 267 

(1 1)σ
 (1 2)σ

, 
1

1

σ 
 
 



, and 
1

2

σ 
 
 



; the third-order domains 
1 1
1
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, 
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, and 
1 2
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; 268 

and the fourth-order domains 
1 1
1 1
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, and 
1 2
2 1
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. 269 
 270 
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To measure sensitivity to these statistics, we determined psychophysical thresholds in a 271 
standard texture-segmentation task ([17], described below) via a method of constant stimuli. 272 
For each threshold measurement, stimuli were defined by equally-spaced points lying along 273 
12 rays in the triangular domain. Each ray began at the origin of the domain (the random 274 
texture) and extended either towards a vertex, or to points that were equally spaced along the 275 
edges of the domain. The distances of the endpoints from the origin were chosen based on 276 
pilot experiments so that the texture contrasts would capture the transition between 277 
subthreshold and suprathreshold performance.  For the first-order statistics, an additional set 278 
of 12 rays were interleaved to better delineate the threshold behavior.  These specifics are 279 
detailed in the Supplemental Document, Figure S1.  280 

For construction of psychophysical curves and quantification of thresholds, the texture 281 
contrast c  is defined as the distance from the origin (i.e., the centroid of the domain), scaled 282 
so that the vertices of each domain have a texture contrast of 1. 283 
Experiment 2: Pairs of texture statistics, three luminance levels 284 

Experiment 2 quantifies sensitivity to combinations of image statistics drawn from 285 
different triangular domains (genera). We focused on combinations of cardinal second-order 286 
statistics, as sensitivity to these statistics was high, and included interactions between image 287 
statistics that specify correlations in the same spatial orientation (i.e., between two image 288 
statistics from the (1 )sσ -family) as well as interactions  between image statistics that specify 289 
correlations in different orientations (i.e., between the (1 )sσ -family and the 1

s

σ 
 
 



-family).  290 

Fig. 4A,B shows stimuli that probe interactions between correlations in the (1 )sσ -family, 291 
but drawn from different genera: (1 1)σ  (along the abscissae of the panels) and (1 2)σ  (along 292 
the ordinates of the panels). The panels differ in terms of the species of the (1 1)σ  genus that 293 
lies along the abscissa: in Fig. 4A, it is in the direction of the (1,0,0) -vertex of the (1 1)σ -294 
domain; in Fig. 4B, it is in the direction of the (0,0,1) -vertex. In both cases, the ordinate is 295 
in the direction of the (1,0,0) -vertex of the (1 2)σ -domain. Not all combinations of 296 
coordinates are represented in these panels, because extreme values of one coordinate limit 297 
values of the other – but these limits were beyond the range needed to determine thresholds. 298 

 299 
Fig. 4C,D shows stimuli that probe interactions in different spatial directions: 1

2

σ 
 
 



, along 300 

the ordinate, and (1 2)σ , along the abscissa. In both cases, the ordinate is in the direction of 301 
the (1,0,0) -vertex of the 1

2

σ 
 
 



-domain. In Fig. 4C, the abscissa is in the direction of the 302 

(1,0,0) -vertex in the (1 2)σ -domain; in Fig. 4D, the abscissa is in the direction of the 303 
(0,1,0) -vertex of that domain.  304 

Experiments were organized into four groups. Group I examined interactions between 305 
different statistics with the same family ( (1 1)σ  and (1 2)σ , as in Fig. 4A,B); the other 306 
groups probed interactions between statistics from different families, describing correlations 307 
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in orthogonal directions, (1 )sσ  and 1
s

σ 
 ′ 



: with ( , ) (1,1)s s′ =  in group II, ( , ) (1, 2)s s′ =  308 

Fig. 4. The domain generated by specifying a pair of cardinal second-order statistics. In each case, the random texture 
is at the origin, indicated by the intersection of the two solid black lines. Panels A and B: The statistics are (1 1)σ  and 

(1 2)σ , both specifying horizontal correlations. In A, the abscissa indicates values of (1 1)σ , ranging from 1 4 4( , , )
9 9 9

 

to (1,0,0) ; this corresponds to the ray pointing towards the lower vertex of Fig. 2A. The ordinate indicates values of 

(1 2)σ  over the same range; this corresponds to the ray pointing towards the lower vertex of Fig. 2B. Steps along 

each axis are equal to 2 1 1( , , )
9 9 9
− − . In B, the ordinate is the same as in A, but the abscissa now indicates values of 

(1 1)σ  ranging from 4 4 1( , , )
9 9 9

 to (0,0,1) , corresponding to the ray pointing towards the upper vertex in Fig. 2A. 

Here, abscissa steps are equal to 1 1 2( , , )
9 9 9

− − . Panels C and D: The statistics are (1 2)σ  and 1
2

σ 
 
 

 , specifying 

horizontal and vertical correlations, respectively. In C, the abscissa indicates values of (1 2)σ , ranging from 

1 4 4( , , )
9 9 9

 to (1,0,0) ; this corresponds to the ray pointing towards the lower vertex of Fig 2B. The ordinate indicates 

values of 1
2

σ 
 
 

 over the same range; this corresponds the same kind of correlation, but now in the vertical direction. 

Steps along each axis are equal to 2 1 1( , , )
9 9 9
− − . In D, the ordinate is the same as in C but the abscissa now indicates 

values of (1 2)σ  ranging from 4 1 4( , , )
9 9 9

 to (0,1,0) , corresponding to the ray pointing towards the right vertex in 

Fig. 2B. Here, abscissa steps are equal to 1 2 1( , , )
9 9 9

− − . In all panels, the coordinates at the origin are equal to 

1 1 1( , , )
3 3 3

, corresponding to the random texture. 
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in group III, and ( , ) (2, 2)s s′ =  in group IV (the latter shown in Fig. 4C,D). These domains 309 
included 22 pairs of statistics, each sampled along rays in 12 equally-spaced directions. As 310 
was the case for Experiment 1, the positions of the three points sampled along each ray were 311 
determined by pilot studies to ensure that they would be effective for measuring thresholds; 312 
further details are provided in the Supplemental Document, Figure S2 and Table S1. Also as 313 
in Experiment 1, texture contrast c  is defined as the distance from the origin, scaled so that 314 
the vertices of each domain have a texture contrast of 1c = . 315 
2.2 Stimuli for experiment 3 316 
The last set of experiments makes use of textures with up to 11 luminance levels. We focused 317 
on second-order statistics that provided tests of the computational model complementary to 318 
the data of Experiments 1 and 2. Specifically, we selected members of the second-order 319 
families (1 )sσ  and 1

s

σ 
 ′ 



 that specify progressively smoother gradients as further gray levels 320 

were added, and a contrasting set of statistics that does not specify gradients. 321 
The textures that probe these statistics are shown in Fig. 5, for the number of gray levels 322 

(3, 4, 5, 7, and 11) used in these experiments. Within each of the “gradient” stimuli (the 323 
individual patches in Fig. 5A), luminances tend to increase gradually in one direction (here, 324 
left-to-right), and then reset abruptly from white to black. This progression is clearest for the 325 
examples with maximum correlation strength ( 1c = ). In the “streaks” (Fig. 5B), luminances 326 
of adjacent checks (here, horizontal) tend to match, leading to elongated streaks as correlation 327 
strength increases. In all cases, a correlation strength of 0 corresponds to the random texture, 328 
and the maximum correlation strength is 1. 329 

The statistics underlying these textures are specified by an extension of the formalism 330 
used above for three-luminance textures (see Table 1 and Supplemental Document). The G  331 
gray levels are designated by 0, 1, …, 1G − , where, by convention, we take 0 to indicate a 332 
gray-level of black, and 1G −  to indicate a gray-level of white. A horizontal second-order 333 
image statistic (1 )sσ  is specified by a vector 0 1 1( , ,..., )Gv v v −  of length G , each entry hv  334 
is the probability that 1 2 (mod )A sA h G+ = . Vertical second-order image statistics 1

s

σ 
 
 



 335 

are specified analogously. All coordinates are non-negative and must sum to 1, and the 336 
random texture corresponds to a vector 0 1 1( , ,..., )Gv v v −  with all entries equal to 1/ G . Note 337 
that G , the number of gray levels, and c , the texture contrast, are independent.  The G  gray 338 
levels always include black and white and 2G −  equally-spaced intermediate values, and 339 
each gray level occurs in 1/ G  of the checks.  Independently, c , the texture contrast, 340 
indicates the departure of the spatial arrangement from randomness.  341 

A left-to-right gradient texture can be represented in these coordinates as follows. In a left-342 
to-right gradient, the probability that 2 1 1A A= +  is increased. This is equivalent to an 343 
increase in the probability that 1 2 1 (mod )A A G− = − , i.e., that 344 

1 2( 1) 1 (mod )A G A G G+ − = − . Thus, the relevant image statistic is (1 1)Gσ −


, and its 345 
final (( 1G − )th) entry captures this increase. Since the bias increases linearly with 346 
correlation strength, the parameterization of this gamut of textures is given by  347 

  ( ) ( )1 1 1 1
(1 1) (1 ) , ,..., , 0,0,...,0,1G G G G Gc cσ − = − +


. (1) 348 
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At maximum correlation strength ( 1c = ), 1G −  is the only permissible value of 349 
1 2( 1) (mod )A G A G+ − , so that 2 1 1 (mod )A A G= +  -- yielding a strict gradient with 350 

luminances increasing to the right. At zero correlation strength ( 0c = ), all values are equally 351 
likely, yielding a random texture. These conventions are consistent with that of Experiments 1 352 
and 2, in which 0c =  corresponds to a random texture and 1=c  corresponds to a 353 
maximally-structured texture at a vertex of the domain. 354 

Fig. 5. Examples of textures used in Experiment 3: gradients (A) and streaks (B). Number of gray levels 
indicated by G . Gradient textures have a directionality – in the examples shown here, from left to right. In 
the direction of the gradient, the choice of luminance in each check is biased towards a stepwise increase 
from black to white, followed by an abrupt decrease to black. This is most evident in the examples with 
maximal correlation strength (right end of each row, 1c = ): here, luminances in each row of checks 
progressively increase from black to white and then reset to black; the phase of each row is random. Streak 
textures (B) have an orientation – in the examples shown here, horizontal -- but not a directionality. Along 
the specified orientation, the choice of luminance in each check is biased to match its neighbor. At maximal 
correlation strength (right end of each row, 1c = ), this results in rows of checks whose luminance is 
constant. In all cases, a correlation strength of 0 corresponds to the random texture. 
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Similarly, a leftward gradient texture is specified by increasing the probability that 355 
2 1 1A A= − , i.e., that 1 2 1 (mod )A A G− = . So these textures are parameterized by  356 

 ( ) ( )1 1 1 1
(1 1) (1 ) , ,..., , 0,1,...,0,0G G G G Gc cσ − = − +


. (2) 357 
Streaks are created by increasing the probability that 2 1A A= , i.e., that 358 

1 2 0 (mod )A A G− = . Thus, streaks are parameterized by  359 

 ( ) ( )1 1 1 1
(1 1) (1 ) , ,..., , 1,0,...,0,0G G G G Gc cσ − = − +


. (3) 360 
Downward and upward gradients and vertical streaks are parameterized in a similar fashion, 361 
with 1

1G

σ 
 − 



 replacing (1 1)Gσ −


. 362 

As in Experiments 1 and 2, 0c =  corresponds to the random texture and 1c =  363 
corresponds to maximal correlation strength – periodic ramps for the gradient texture (eqs. (1) 364 
and (2)), and unbroken lines of constant luminance for the streak texture (eq. (3)).  365 
 366 
2.3 Subjects 367 
Studies were conducted in 10 normal subjects (3 male, 7 female), ages 21 to 55. Two of the 368 
subjects (MC and SR) were experienced psychophysical observers. MC, SR, and JB are 369 
authors; LE assisted with the studies; the other observers were naïve to the purposes of the 370 
experiment. All subjects had visual acuities (corrected if necessary) of 20/20 or better.  371 

Experiment 1 was conducted in five subjects (MC, SR, NM, WC, ZA) for all first- and 372 
second-order statistics, and for all third- and fourth-order statistics for which thresholds could 373 
be obtained. For Experiment 2, group I was conducted in MC and WC, group II in MC and 374 
ZA, group III in MC and JB, and group IV in MC, WC, ZA, and JB. Experiment 3 was 375 
conducted in six subjects (MC, IL, LE, YCL, EFV, PJ). 376 

This work was carried out in accordance with the Code of Ethics of the World Medical 377 
Association (Declaration of Helsinki), following approval of the Institutional Review Board 378 
of Weill Cornell, and consent of the individual subjects. 379 
2.4 Segmentation task 380 
For the three experiments, segmentation thresholds were measured in a four-alternative task 381 
adapted from the one developed by Chubb et al., [17] and identical to what was used in 382 
related previous studies[13, 27, 28]. We describe it below for the reader’s convenience, along 383 
with the initial analysis steps. 384 

All stimuli consisted of 64 64×  arrays of checks; each contained an embedded 16 64×  385 
rectangular target whose outer edge was 8 checks from one of the four sides of the array. 386 
Target and background regions were filled either with a structured texture drawn from one of 387 
the domains described above, or a contrasting texture. The contrasting texture was fully 388 
random, i.e., each check was independently colored with one of G  equally-spaced luminance 389 
values from black to white, each with probability 1/ G  ( 3G =  in Experiments 1 and 2; 390 

{3,4,5,7,11}∈G  in Experiment 3). To ensure that the subject performed the task by 391 
identifying a texture boundary, rather than a texture gradient [31], half of the trials had a 392 
structured target on a random background and half had a random target on a structured 393 
background. Examples of both kinds of stimuli (structured target on random background, 394 
random target on structured background) are shown in Fig. 6A, and the four alternative target 395 
positions are shown in Fig. 6B. 396 

As previous work showed no consistent threshold difference between these conditions, we 397 
pooled data across this randomization. We also found no consistent difference between 398 
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thresholds for horizontal vs. vertical stimuli in Experiment 3, and therefore pooled across 399 

Fig. 6. A: Stimulus examples for the three experiments.  Stimulus parameters: Experiment 1, from domain of Fig. 
2A, with (1 1) [0.75,0.25,0]σ =

  (texture contrast 0.66c = ); Experiment 2, from domain of Fig. 4C,   

(1 2) 0.6218 ]1[ 0.189  0.1891σ =
  and  1

2

]0.5 0.25 0.25[σ 
 
 

=
  (texture contrast 0.5c = ); Experiment 3, from Fig. 5A, 

with 11G =  gray levels and texture contrast 0.8c = . All of these texture contrasts are suprathreshold. B: The four 
alternative target positions.  C: Trial timeline.   
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these conditions. Note also that, while this task has a “global” component in the sense that 400 
evidence can be pooled across the entire stimulus, this global aspect is constant across all 401 
stimuli; the limiting factor is the information contained in local correlations, which is 402 
stimulus-dependent.  403 

In Experiment 1, each test session explored a triangular domain specified by a texture-404 
statistic genus; examples of these domains are shown in Fig. 1 (first-order), Fig. 2 (second-405 
order), and Fig. 3 (third- and fourth-order). Second-, third-, and fourth-order domains were 406 
sampled along 12 rays (Fig. S1A,B); the first-order domain was sampled along 24 rays (Fig. 407 
S1C) in separate sessions of 12 rays each. Three texture contrasts were chosen along each ray 408 
to span the range from near-chance performance to near-perfect performance in pilot 409 
experiments, or, if performance did not achieve near-perfect performance, at texture contrasts 410 
( c ) of 1/ 3 . 2 / 3 , and 1. A single test session contained 8 examples of stimuli specified by 411 
all three texture contrasts on the 12 rays; these 8 examples included each of the four target 412 
positions, and in both target-structured and background-structured conditions, yielding 413 
3 12 4 2 288× × × =  unique trials, presented in random order. We collected responses to 15 414 
such 288-trial blocks from each subject, yielding 120 judgments for each of the three contrast 415 
levels on each ray. For third- and fourth-order statistics, results from two subjects (MC, SR) 416 
showed that sensitivity was largely restricted to a subset of three rays; in these domains, the 417 
other subjects (NM, WC, ZA) were tested with only these three rays. In these cases, blocks 418 
contained 32 examples of each contrast level on each ray and 4 such blocks were obtained, 419 
yielding 128 judgments for each contrast level on each ray. 420 

Experiment 2 was organized similarly, with each test session devoted to a domain 421 
specified by a pair of second-order texture statistics; examples are shown in Fig. 4 and the 422 
sampling strategy is given in Table S1 and Fig. S2. 423 

In Experiment 3, each test session consisted of stimuli with a fixed number of gray levels 424 
(3, 4, 5, 7, or 11), and included both gradient stimuli (eqs. (1) and (2)) and streak stimuli (eq 425 
(3)). To cover the range of performance, five texture contrasts were used: 426 

{0.2,0.3,0.45,0.6,0.8}∈c  for the gradient stimuli, and 2/3 of these values for the streak 427 
stimuli. There were 6 kinds of stimuli: gradients in each of the four cardinal directions 428 
contrasted with the random texture, and streaks in horizontal and vertical orientations 429 
contrasted with the random texture. As in Experiments 1 and 2, targets appeared in each of 430 
four possible positions, and the textures used to render the target and background were 431 
swapped in half of the trials. Thus, there were 5 6 4 2 240× × × =  unique trials, presented in 432 
random order. We collected responses to 12 such blocks from each subject, yielding 96 433 
judgments for each of the five contrast levels and the six kinds of stimuli.  434 

We collected data from six subjects (MC, IL, LE, YCL, EFV, PJ) for 3, 5, and 11 gray 435 
levels and in four of these (MC, YCL, EFV, and PJ) for 4 and 7 gray levels. 436 
2.5 Procedure 437 
The procedure for the three experiments was similar to that of previous studies [13, 27, 28] 438 
and is summarized here. A Cambridge Research ViSaGe system, running custom Delphi 439 
software produced the stimuli and collected responses. Stimuli were displayed on an LCD 440 
monitor (mean luminance of 23 cd/m2, refresh rate 60 Hz), beginning 300 ms after the subject 441 
pressed a “ready” button.  Stimuli had a duration of 120 ms, and were followed by a 500-ms 442 
mask consisting of checks that were half the size of the stimulus checks, randomly filled with 443 
the luminance levels used in the experiment (see Fig. 6C for the timeline). The display size 444 
was 15 15×  deg ( 64 64×  checks, 14.8 min each, each check consisting of 10x10 monitor 445 
pixels); viewing was binocular at 100 cm, and contrast was 1. Note that the checks were 446 
sufficiently large so that, even at the edges of the display, they were plainly visible[32], and 447 
previous work with black-and-white textures showed that thresholds are approximately scale-448 
invariant at and below this check size [13]. ViSaGe software and its photometer was used to 449 
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linearize the monitor’s output via a look-up table, which was recalibrated prior to each 450 
experimental session.  Thus, the luminance levels used ranged from 0 cd/m2 (black checks) to 451 
46 cd/m2 (white checks). The gray checks in Experiments 1 and 2 were 23 cd/m2; the gray 452 
checks in Experiment 3 had luminance levels equally spaced between 0 and 46 cd/m2 – for 453 
example, for 5G = , the luminance levels were 0, 11.5, 23, 34.5, and 46 cd/m2. 454 

Subjects were informed that on every trial, a target would be present, and was equally 455 
likely to be in any of four positions (top, right, bottom, left), which they were to indicate by 456 
pressing the corresponding button on a four-button response box. They were asked to fixate 457 
centrally and not attempt to scan the stimulus. Trials were self-paced, triggered by a separate 458 
button-press. Inexperienced subjects received practice of approximately two hours to become 459 
accustomed to the brief stimulus presentation time and to practice maintaining central fixation 460 
without scanning. During practice, but not during data collection, subjects received auditory 461 
feedback for incorrect responses. 462 
2.6 Analysis 463 
For each stimulus type (i.e., for each ray in the texture domains of Experiments 1 and 2, and 464 
for each kind of gradient or streak in Experiment 3), we determined the texture contrast 465 
threshold for segregation, via a procedure similar to that used in previous studies [13, 26, 27], 466 
as summarized here. First, for each set of responses to a given stimulus type, we found the 467 
maximum-likelihood fit of a Weibull function to the observed fraction correct (FC):  468 

 ( )( / )1 3( ) 1 2
4 4

−= + −
br

rc aFC c . (4) 469 

As above, c  is the texture contrast, defined as the distance to the fully random texture (the 470 
centroid), normalized by the distance from the vertex to the centroid. ra  is the fitted threshold 471 
(i.e., the value of c  at which FC=0.625, halfway between chance (0.25), and perfect (1.0)), 472 
and rb  is the Weibull shape parameter. As previously reported [13, 27], the shape parameter 473 

rb  typically had similar values across rays, with overlapping confidence limits that usually 474 
included the range 2.2 to 2.7. Since our focus is on determining the thresholds, we then refit 475 
the data from each experiment by a set of Weibull functions that shared a common shape 476 
parameter b , while allowing the threshold parameter ra  to vary freely across rays. This 477 
procedure reduced the number of free parameters without altering the quality of the fit to 478 
Weibull functions. 95% confidence intervals were determined via 1000-sample bootstraps. 479 
Note that this procedure could yield an estimated threshold 1>ra , i.e., beyond the boundary 480 
of the texture domain, if performance was above chance but never reached a FC of 0.625.  481 

Sensitivity was defined as 1/threshold, with corresponding confidence intervals. Across-482 
subject averages of sensitivities or thresholds are computed as the geometric means, and 483 
statistics are computed on the logarithms of the raw values. All calculations were carried out 484 
with in-house MATLAB (MathWorks, Natick, MA) software, which was also used to 485 
synthesize the stimuli described above. 486 

 487 
3. Model 488 

Here we describe a computational model for discrimination thresholds for textures that 489 
contain multiple gray levels and spatial correlations (Fig. 7). As a starting point, we used two 490 
complementary sets of psychophysical studies: studies of textures with multiple gray levels 491 
but without spatial correlation (“IID textures”), and studies with spatial correlation but only 492 
black and white checks. These studies were carried out with different paradigms, in separate 493 
labs, and with separate subjects. The model described here is fully constrained by these 494 
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studies and makes explicit predictions for discrimination thresholds for textures that include 495 
multiple gray levels and spatial correlations.  496 

In overview, the model (Fig. 7) is as follows. The first stage of the model accounts for 497 
sensitivity to IID textures by recasting the mechanisms proposed by the studies of Chubb and 498 
colleagues [14, 16, 17, 33] as stochastic thresholds, rather than gray-level sensitivities. This 499 
stage yields a set of internal representations, one for each of the original Chubb mechanisms. 500 
The second stage of the model then processes the local correlations within these internal 501 
representations. The computations used to do this are the same as those deduced in our 502 
previous studies [13, 18, 27, 28] that focused on black-and-white textures.  503 

We note that, while we describe the model’s computations in terms of the texture 504 
coordinates introduced above, the model operates directly on the visual input.  Thus, it makes 505 
predictions that are independent of the coordinates used to parameterize the textures, it treats 506 
all orders of correlation together, and it is not restricted to the textures that lie within the space 507 
we consider.  508 

 509 
3.1 First stage: sensitivity to gray-level distribution 510 
Chubb and colleagues [14, 17, 33] showed that discrimination of IID textures could be 511 
accounted for by three “dimensions:” one dimension approximating the mean luminance, a 512 
second dimension approximating variance, and a third dimension signaling the fraction of 513 
very dark checks (“blackshot”). Coordinates along dimension m  were linear functions of the 514 
histogram distribution: 515 

 ( ) ( )=∑m m i i
i

c D x g x , (5) 516 

where the sum ranges over the gray levels in the texture, ( )g x  is the frequency with which 517 
gray level x  occurs, and ( )mD x  is the extent to which a gray level x  contributes to 518 
mechanism m . IID textures that shared the same coordinates 1 2 3( , , )c c c  were 519 
indistinguishable, even if their gray-level distributions were disparate. Using an asymmetric 520 
search task, they later [16] showed that these three dimensions derived from the activations of 521 
four underlying mechanisms, which were also linear functions of the histogram distribution: 522 

 ( ) ( )=∑m m i i
i

a F x g x , (6) 523 

These four mechanisms are necessarily linearly dependent, since they are constrained to 524 
yield the three dimensions of eq. (5) above. For textures with nine equally-spaced gray values 525 
{0,1/ 8,...,7 / 8,1} , [16] determined consensus values of the linear functions of ( )m iF x  526 
across three subjects, along with the relative weightings with which each subject used these 527 
mechanisms. These data were kindly provided by C. Chubb and are given in Table S2. The 528 
correspondence to the nomenclature of [16] is as follows: 1F  and 2F correspond to the two 529 
complementary quasilinear mechanisms (their *,3F  and *,4F ); 3F  corresponds to the 530 
blackshot-like mechanism (their *,1F ), and 4F  corresponds to the mechanism sensitive to 531 
midrange grays (their *,2F ).  532 
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To apply these data to general gray-level distributions, we interpolated these values via a 533 
cubic spline. Thus, for a texture in which ( )∆g x x  is the fraction of checks with gray levels 534 
between x  and + ∆x x , the “activation” produced in mechanism m  ( {1,2,3,4}∈m ) is 535 
given by  536 

 
1

0

( ) ( )= ∫m ma F x g x dx . (7) 537 

In our model, we recast each Silva and Chubb mechanism m  as a probabilistic 538 
conversion to an internal representation mI  of the original texture. Specifically, we interpret 539 

( )mF x  as a nonlinear function of the gray level, whose value at each location in the texture 540 
determines the probability that the original check is internally represented in the “high” state 541 
(designated 1), vs. the “low” state (designated 0). The probability that a check of gray-level 542 
x  is converted to 1 by mechanism m  is given by 543 

 
,

( )1( ) 1
2 max | |
 

= +  
 

prob m
m

m x

F xF x
F

. (8) 544 

This remaps the zero-centered ( )mF x ’s to quantities ( )prob
mF x  that range from 0 to 1, as 545 

shown by the nonlinearities in Fig. 7. We postulate that this stochastic conversion from gray-546 
level to a binary representation is independent at each check and across the mechanisms.  547 

In this re-interpretation, the spatial average mI  of the internal representation of a 548 
texture with luminance distribution ( )g x corresponds to the activation produced by the 549 
mechanism in the original formulation, other than a fixed offset and proportionality constant:  550 

Fig. 7. A model for discrimination of textures with multiple gray levels and spatial correlations, illustrating how it 
acts on the visual stimuli used here. The four curves labeled “nonlinearity” show the mechanisms prob

mF  (eq. (8)).  
For further details, see text. 
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∫ ∫

∫

prob prob m
m m m

m x

m
m

m x m x

F xI F x F x g x dx g x dx
F

aF x g x dx
F F

,  (9) 551 

where we have used eq. (7) and 
1

0

( ) 1=∫ g x dx , since it is a probability distribution. This 552 

means that two textures are indistinguishable in the original Chubb model if, for each 553 
mechanism, their internal representations in the present model have identical average values.  554 
3.2 Second stage: sensitivity to spatial structure 555 

The influence of the spatial organization of these internal representations is addressed by 556 
the second stage of the model. Specifically, we posit that texture discrimination is based on 557 
comparing the local statistics of these internal representations, and that the local statistics are 558 
compared according to the model [13] for black-and-white textures. That model posited that 559 
discrimination of a locally-correlated black-and-white texture from a random texture could be 560 
accounted for by 10 local image statistics.  These quantities, which correspond to the local 561 

image statistics introduced above for 2G =   (γ , _β , |β , \β , /β , 
θ

, 
θ

, 
θ

, 
θ

, α ) 562 

are here collectively denoted by the column vector 1 2 10( , ,..., )y y y y=


 to facilitate a 563 
compact notation.  Sensitivity to these image statistics and their combinations was specified 564 
by a 10 10×  symmetric matrix Q , with the threshold for discrimination from a random 565 
texture given by an ellipsoid, 566 

 , 1

T
ij i j

i j
y Qy Q y y S

=

= =∑ 

. (10)  567 
Q  is constrained not only by cross-diagonal symmetry ( ij jiQ Q=

), but also by the empirical 568 
finding that thresholds are unchanged after 90 -deg rotations of a texture, and after mirroring 569 
a texture in the cardinal axes. This leaves a total of 20 free parameters for Q . [13] determined 570 
these parameters (for 1S = ) in 4 subjects (one of whom, MC, was a subject in the present 571 
studies) and validated them with out-of-sample predictions for black-and-white textures. 572 
Here, we use the average (arithmetic mean) across subjects (Table S2). 573 

To incorporate this process into a model for discrimination of gray-level textures in a way 574 
that ensures consistency with findings for black-and-white textures, we need to consider how 575 
the characteristics of the mechanisms in the first stage influence the local image statistics 576 

[ ]my  of its internal representation. We first consider how a mechanism transforms the 577 
probabilities of gray-level configurations into probabilities of binary configurations, and then 578 
the transformation from binary configurations into local image statistics.  579 

The key observation is that, although each of the Silva-Chubb mechanisms depends 580 
nonlinearly on gray level, they act linearly on the probabilities of local configurations. That is, 581 

a 2 2×  region of the stimulus texture with gray-level values 1 2

3 4

x x
x x

 
 
 

 (with ix  in the 582 

range [0,1] ) will be converted by mechanism m  to one of the 16 possible binary 583 
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representations 1 2

3 4

b b
b b
 
 
 

 ( 0ib =  or 1). The probability that this block will be converted to 584 

1 2

3 4

b b
b b
 
 
 

 via mechanism m  is equal to the joint probability that each of the ix  is 585 

converted to the corresponding internal representation ib . Since we posit that these 586 
conversions are independent,  587 
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.  (11) 588 

The probability of each binary block type in the internal representation is the sum of 589 
contributions from each of gray-level configurations in the original texture: 590 

1 2 1 2[ ]
1 1 2 2 3 3 4 4

3 4 3 4

( , ) ( , ) ( , ) ( , )m
m m m m

x

b b x x
p F x b F x b F x b F x b p

b b x x
   

=   
   

∑


, (12) 591 

where the sum is over all 4G  gray-level configurations 1 2

3 4

x x
x

x x
 

=  
 



. This can be written 592 

more compactly as 593 
 [ ] [ ]m m

Gp L p=
 

, (13) 594 
where p  is a column vector of the probabilities of the 4G  gray-level configurations indexed 595 
by x , [ ]mp  is a column vector of the 42 16=  binary block probabilities in the internal 596 
representation m , and [ ]m

GL  is a 4 16G ×  matrix specified by the multiplier in (12). Note 597 
that although [ ]m

GL is a large matrix, it is entirely specified by the Silva-Chubb model and the 598 
set of gray levels, via our probabilistic interpretation. 599 

We next consider how [ ]mp , the block probabilities of the internal representation, are 600 
captured by the binary image statistics [ ]my . Each image statistic is a linear combination of 601 
block probabilities -- for example, |β , is the difference between the fraction of 2 1×  blocks 602 
in which the checks match, and the fraction in which they mismatch. Thus, the transformation 603 
from block probabilities to image statistics is linear:  604 

 [ ] [ ]m my Yp=
 

, (14) 605 
where Y  is a 10 16×  matrix determined solely by the definition of the image statistics (for 606 
details, see [18]), and is given in Table S4. Combining eqs. (13) and (14) yields the 607 
transformation from p , the block probabilities in the original texture, to [ ]my , the image 608 
statistics of the binary representation produced by mechanism m : 609 

 [ ] [ ]m m
Gy YL p=

 

. (15) 610 
According to our model, the threshold to distinguish two textures, characterized by p  and 611 

p′  respectively, is based on a comparison of the image statistics of their binary 612 
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representations, [ ]my  and [ ]my′ . For distinguishing between a structured black-and-white 613 
texture with statistics y  and a random one ( 0y′ = ), we previously found [13]that thresholds 614 
were accounted for by a quadratic function of y  (eq. (10)). For comparison of two structured 615 
textures, we previously found [28] that, in the three coordinate planes tested, thresholds 616 
depended primarily on the difference y y′−

 

, and not on the reference texture y′ . That is, 617 
the texture discrimination signal for two black-and-white textures given is given by: 618 

 ( ) ( )TS y y Q y y′ ′= − −
   

. (16) 619 
 Here, we postulate that these findings also apply at the level of the internal binary 620 

representations, i.e., that each internal binary representation generates a signal based on a 621 
quadratic function of the difference in image statistics [ ] [ ] [ ]m m my y y′∆ = −

  

. The overall 622 
texture discrimination signal S  is then a sum of contributions from each of the mechanisms:  623 

 [ ] [ ]( )m T m
m

m
S w y J y= ∆ ∆∑  

, (17) 624 

where the weights mw  are taken to be the weights from the Silva-Chubb model (Table S2). 625 
The matrix J  describes how the image statistics are used within each mechanism. We 626 
determine it by the requirement that eq. (17) is consistent with previous studies of black-and-627 
white textures, i.e., eq. (16). Note that this requirement means that J  will not be the same as 628 
the matrix Q , since Q  acted on the statistics of a black-and-white texture, while J  acts on 629 
the statistics of the internal representation of a texture, after it has been transformed by each 630 
mechanism m . The calculation of J  is detailed in the Supplemental Document 631 
(“Specification of the model’s quadratic form”), and the resulting matrix is given in Table S3.  632 
3.3 Model summary 633 
In brief, the proposed model (Fig. 7) specifies a difference signal S  that governs the 634 
discrimination of two gray-level textures. The model has two stages. In the first stage, several 635 
independent mechanisms generate distinct internal representations of each texture, by 636 
applying a stochastic threshold that depends nonlinearly on the gray level (eqs. (7) to (9)). 637 
This stage of the model ensures that for textures without spatial correlation (“IID textures”), 638 
the model reproduces the three-dimensional domain (luminance, contrast, blackshot) of 639 
discriminable IID textures identified by Chubb and coworkers [14, 16, 17, 33]. Consistency is 640 
guaranteed because the first stage uses the same mechanisms as the Chubb et al. model, so 641 
IID textures that are indistinguishable according to the Chubb et al. model produce 642 
indistinguishable internal representations in the present model.  643 

The second stage of the model confers sensitivity to spatial structure by comparing the 644 
local statistics of these binary representations. The specifics of that comparison (eq. (17)) are 645 
determined by the requirement that for black-and-white textures, the findings of [13] are 646 
recovered.  647 

Other than the arbitrary value of S  (eq. (17)) at which discrimination occurs, the model’s 648 
parameters are determined by complementary previous studies: discrimination of textures 649 
with multiple gray levels but no spatial correlation, and textures with only black and white 650 
checks, with local spatial correlations in two dimensions. Note that for all textures, the 651 
dependence of the discrimination signal on texture contrast is quadratic, but the 652 
proportionality contrast depends on the kinds of correlations that are present in the texture, via 653 
the model specification. These texture-dependent proportionality constants determine the 654 
predicted relative sensitivities. 655 
3.4 Making model predictions 656 
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To determine model predictions for the current experiments, we simulate the images 657 
generated by the stimulation generation procedure and determine the texture contrast for 658 
which the discrimination signal S  reaches a threshold value. Since the specific experimental 659 
paradigm (check size, stimulus size, target size, viewing time, etc.) used here is the same as 660 
that of [13, 18, 27, 28] the model predicts the experimentally-measured discrimination 661 
threshold to be the value of the texture contrast for which 1S = . This computational 662 
procedure was modified for rays in which the predicted threshold was high, since the stimulus 663 
generation procedure is limited in the range of texture contrasts that can be attained. In those 664 
directions, we determine the texture contrast at which 1/16S =  rather than 1S = . Then, 665 
recognizing the quadratic dependence of discrimination signal on texture contrast, we convert 666 
this texture contrast into a predicted threshold by multiplying it by 1/ 16 4S = = . 667 

We also made predictions from alternate models that had the same structure as Fig. 7, but 668 
posited a different set of first-stage mechanisms. One such model had just one first-stage 669 
mechanism, with a threshold at mid-gray: it mapped all darker-than-mean checks to 0, all 670 
lighter-than-mean checks to 1, and randomly assigned mid-gray checks to 0 or 1. Other 671 
models were reduced from the model of Fig. 7 by omitting one or more of the Silva-Chubb 672 
mechanisms from the first stage. Since mechanisms 1F  and 2F  are equal and opposite – and 673 
this complementarity was an essential feature of the findings of [16], these reduced models 674 
always included either both of these mechanisms, or neither. In all cases, these alternate 675 
models were implemented by repeating the above calculations with the modified set of 676 
mechanisms, including a re-calculation of the matrix J  in eq. (17) so that the resulting 677 
model’s predictions remain consistent with our findings for black-and-white textures [13].  678 

To provide an omnibus measure of model predictions, we computed the fraction of the 679 
variance of the psychophysical thresholds that was unexplained by the model predictions, 680 
calculated by comparing the sum of the squares of the difference in measured and predicted 681 
thresholds, to the sum of the squares of the predicted thresholds, without scaling.  For this 682 
purpose, psychophysical thresholds were averaged across individuals via the geometric mean, 683 
as in previous studies[13]. For some conditions, the model predicted an infinite threshold (i.e., 684 
the criterion of 1/16S =  in eq. (17) was never reached at any texture contrast). For those 685 
conditions, we used the largest finite threshold that the model predicted in any other 686 
condition.  To obtain a comparable measure of intersubject reliability, we computed the 687 
fraction of the variance of each subject’s thresholds that was not explained by each other 688 
subject, across conditions in common, and report the median value of these variance fractions 689 
across all subject pairs. These computations were carried out separately for Experiments 1 690 
(first- and second-order statistics only), 2, and 3. 691 
4. Results 692 

4.1 Experiment 1 693 
We used a four-alternative segmentation task (Fig. 6) to determine sensitivity to image 694 
statistics in textures that contained three gray levels and spatial correlations. Each set of 695 
measurements focused on the correlations within a particular spatial template– e.g., a pair of 696 
horizontally-adjacent checks – and within this family of correlations, on a specific type 697 
(“genus”) of correlations. As detailed in Methods, the genus is defined by constraining the 698 
distribution of a specific linear combination of luminance values of the checks in the template, 699 
where luminance is denoted by 0 for black, 1 for gray, 2 for white, and the linear combination 700 
is computed mod 3. So, for example, for the family of correlations between a pair of 701 
horizontally-adjacent checks, the genus specified by (1 1)σ  constrains the sum A B+  of 702 
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adjacent luminance values, while the genus specified by (1 2)σ  constrains the sum 2A B+ . 703 
Since these sums are computed mod 3, they can have the values 0, 1, or 2, and the 704 

Fig. 8. Psychophysical thresholds (A) and model predictions (B-G) for Experiment 1, first- and second-order 

statistics. Each triangular domain corresponds to a first-order statistic (1)σ  (Fig.1), a second-order statistic 

(1 )sσ involving horizontally-adjacent checks (Fig. 2), or a second-order statistic 1
s

σ 
 
 



involving checks that 

share a corner. Upper row: individual subjects’ data. The origin corresponds to a random texture; green triangle 
corresponds to the boundary of the domain, whose vertices are at (1,0,0) . (0,1,0) , and (0,0,1) . Rings indicate 
textures of equal correlation strength, with a correlation strength of 1 at the vertices of each domain. Thresholds 
outside the domain correspond to conditions in which performance was above chance, but did not reach the criterion 

fraction correct within the stimulus domain. Note that the domains for 1
s

σ 
 
 



 are plotted on a different scale. For 

thresholds <1, uncertainties (2SEM) for individual subject thresholds are typically < 10% of the measured thresholds, 
and are not shown. Model predictions are shown for the full model (B) and for alternate models consisting of a single 
channel that binarizes at mid-gray(C) or subsets of the Silva-Chubb mechanisms (D-G). For model predictions, 
isodiscrimination contours are disconnected if predicted thresholds at intermediate directions are >4. 
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probabilities of these three values describes a triangular domain (see Fig. 2). Similarly, the 705 
first-order domain (1)σ  (Fig. 1) is parameterized by the distribution of single-check gray 706 
levels, and the third- and fourth-order domains (for example, 1 1

1

σ 
 
 



 and 1 2
2 1

σ 
 
 



, Fig. 3) are 707 

parameterized by the distribution of linear combinations of gray levels in 3 and 4 neighboring 708 
checks, respectively. In each domain, the centroid is the random texture; the measured 709 
thresholds indicate, in multiple directions within each domain, the distance from randomness 710 
that is necessary for the statistical structure of the texture to be visually apparent. 711 

Fig. 8A shows the measured thresholds for the first- and second-order domains in five 712 
subjects. Thresholds are lowest for the first-order statistics, and, within the second-order 713 
statistics, lower for the statistics that describe correlations among horizontally-adjacent checks 714 
( (1 )sσ ) than for the statistics that describe correlations among checks that share a corner, 715 

1
s

σ 
 
 



. This pattern holds in all subjects. Additionally, the isodiscrimination contours are 716 

approximately elliptical and symmetric about the origin, other than for directions in which 717 
thresholds are high and therefore not precisely measurable. Thresholds for correlations among 718 
vertically-adjacent checks 1

s

σ 
 
 



 were not systematically determined, as pilot experiments (as 719 

well as our previous studies with black-and-white textures [13]) showed that they were very 720 
similar to the corresponding thresholds for horizontally-adjacent checks.  721 
As detailed in Methods, we constructed a model (Fig. 7) for discrimination of spatially-722 
correlated gray-level textures, based on two previously-obtained complementary datasets: (i) 723 
studies of discrimination of gray-level textures with no spatial correlation [14, 16, 17, 33], and 724 
(ii) studies of discrimination of spatially-correlated black-and-white textures [13, 18, 27, 28]. 725 
In brief, the model had two stages: a first stage that analyzed luminance distributions via 726 
multiple parallel mechanisms, and produced an internal binary representation along each 727 
channel, and a second stage that was sensitive to spatial correlations present within each of 728 
these internal representations. The model had no free parameters, as it was fully constrained 729 
by the requirement that it accounted for these two previous complementary datasets. 730 

Fig. 8B shows the thresholds predicted by this model. The model approximates the 731 
absolute thresholds found experimentally, and fully accounts for the ordering of thresholds 732 
among the correlation types. It also accounts for the elliptical shapes of the isodiscrimination 733 
contours where thresholds can be reliably determined. However, the model is clearly 734 
imperfect. It predicts a greater sensitivity for first-order statistics than we observed, and the 735 
axes of the ellipses are inaccurately predicted for (1)σ , (1 1)σ , and 1

1

σ 
 
 



. Note, however, 736 

that all model parameters were determined from independent experiments involving textures 737 
with either no spatial correlations [16] or experiments involving black-and-white textures [13, 738 
18], and a nearly non-overlapping set of subjects. 739 

We next examined the extent to which the multichannel nature of the model is critical to 740 
achieve a good correspondence to the experimental observations. We considered a simplified, 741 
one-channel model in which the first-stage mechanism was a threshold, sending darker-than-742 
mean checks to 0 and lighter-than-mean checks to 1, and randomly assigned mid-gray checks. 743 
We also considered multichannel models in which one or more of the Silva-Chubb 744 
mechanisms were deleted. For the latter models, we either retained both 1F  and 2F , or 745 
deleted both – as their complementary, linearly-dependent nature was an important feature of 746 
the Silva-Chubb analysis [16]. In all cases, the model’s second stage was adjusted to ensure 747 
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that it produced thresholds for black-and-white textures that corresponded to previous 748 
psychophysical measurements [13, 18]. 749 

The last five rows of Fig. 8 show that overall, the predictions of these alternate models 750 
differ substantially from the measured thresholds. While the alternate models make similar 751 
predictions for (1 2)σ , and 1

2

σ 
 
 



 (third and fifth columns), their predictions for the first-752 

order statistic and the other second-order statistics differ widely from the psychophysical 753 
measurements. The model with binarization at mid-gray (Fig. 8C) and the model with 754 
luminance-like mechanism pair 1F  and 2F  (Fig. 8D) predict very high thresholds in some 755 
directions in the domains of (1)σ , (1 1)σ , and 1

1

σ 
 
 



, in contrast to the psychophysical 756 

measurements and the predictions of the full model (Fig. 7). The other reduced models (Fig. 757 
8E-G) do not predict unreasonably high thresholds for (1 1)σ  and 1

1

σ 
 
 



, but nevertheless 758 

fail dramatically for (1)σ , and, in some cases (Fig. 8F,8G), for (1 1)σ  and 1
1

σ 
 
 



 as well. 759 

Note that the rather strange predicted isodiscrimination contours for (1)σ  result not only from 760 
omitting mechanisms, but also from constraining the model’s second stage to account for 761 
thresholds to spatially-correlated black-and-white textures.   762 

 763 
Table 2.  Quantification of Model Predictions              764 

 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
Model predictions are quantified by the fraction of the variance of the threshold measurements accounted for by the 790 
model.  For Experiment 1, only first- and second-order statistics are considered. The entry for intersubject variability 791 
is the median of the fraction of variance of one subject’s data that is accounted for by a second subject. For further 792 
details, see Methods. 793 
 794 

Table 2 (second column) quantifies the goodness of fit of the full model and the alternate 795 
models considered in Fig. 8, in terms of the fraction of variance unexplained by each model’s 796 
prediction of the average psychophysical thresholds.  The full model leaves 27% of the 797 

model Experiment 1 Experiment 2 Experiment 3 

full ( 1F , 2F 3F 4F ) 0.268 0.138 0.274 

binarize at mid-gray 1.739 1.565 0.391 

1F  and 2F  0.713 0.573 2.840 

1F , 2F , and 3F  2.481 3.441 0.712 

1F , 2F , and 4F  1.769 0.231 0.856 

3F  and 4F  1.403 0.240 0.158 

intersubject variability 0.585 0.130 0.212 
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variance unexplained; the best alternate model ( 1F  and 2F only) leaves 71% of the variance 798 
unexplained.  For the other models, more than 100% of the variance is unexplained (i.e., in 799 
terms of explained variance, the model is worse than a model that simply predicts that all 800 
thresholds are zero).  The last row of Table 2 compares these statistics with a measure of 801 
intersubject variability, the median of the fraction of the variance unexplained in one subject’s 802 
data, based on a second subject (see Methods).  For the full model, the fraction of variance 803 
unexplained is comparable to the intersubject variability; for all the alternate models, the 804 
fraction of variance unexplained is greater than the intersubject variability, often substantially 805 
so. 806 

Fig. 9. Psychophysical thresholds and model predictions for Experiment 1 in the triangular domains of selected 
third- and fourth-order statistics. First and third rows show experimental measurements; second and fourth rows 
show model predictions. Points are disconnected if intervening directions correspond to chance performance 
(psychophysical data) or thresholds > 4 (model). For examples of the domains, see Fig. 3: the third-order domain 

1 1
1

σ 
 
 



 is shown in Fig. 3A; the fourth-order domain 1 2
2 1

σ 
 
 



 is shown in Fig. 3B. Other plotting conventions as 

in Fig. 8. 
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Thresholds for third- and fourth-order statistics are shown in the first and third rows of 807 
Fig. 9. Thresholds were generally much higher than for first- and second-order correlations, 808 
and there were many directions in the third- and fourth-order domains in which performance 809 
was at chance, even for maximally-correlated textures. The model predicts these higher 810 
thresholds, and largely accounts for the directions in which thresholds could be measured. For 811 
the third-order domains and the fourth-order domains 1 1

2 2

σ 
 
 



 and 1 2
2 1

σ 
 
 



, predicted 812 

thresholds are closest to the borders of the stimulus domain in the direction of the lower-left 813 
vertex, corresponding to configurations in which luminance values sum to zero (mod 3). 814 
These are the directions in which subjects’ performance was better than chance. However, for 815 
the fourth-order domain 1 1

1 1

σ 
 
 



, subjects’ performance was better than chance at each vertex, 816 

and this does not appear to be accounted for by the model. 817 
4.2 Experiment 2 818 
Experiment 2 examines how different kinds of image statistics combine, focusing on second-819 
order image statistics. Studies were organized into four groups: group I made use of stimuli 820 
that combined (1 1)σ  and (1 2)σ ; the other groups made use of stimuli that combined a 821 
horizontal correlation (1 )sσ  with a vertical correlation 1

s

σ 
 ′ 



. Each of these genera of 822 

correlations includes three species (corresponding to the three vertices of its domain), so 823 
pairwise combinations of genera encompassed multiple pairwise combinations of specific 824 
image statistics (Table S1). 825 

Experimental results are shown in alternate rows in Fig. 10. All combinations of image 826 
statistics supported image segmentation, and the pattern of threshold behavior is consistent 827 
across subjects, as in Experiment 1 (Fig. 8A). Moreover, thresholds are again nearly 828 
symmetric for positive and negative correlation strengths, and isodiscrimination contours 829 
were very nearly circular or elliptical. These behaviors were also captured by the model of 830 
Fig. 7, including the orientation of the isodiscrimination contours in most cases. 831 

Quantitatively (Table 2), the model of Fig. 7 also performs well; the fraction of variance 832 
unexplained (14%) is comparable to median intersubject variability (13%). None of the 833 
alternate models perform comparably:  two (the models with mechanisms 1F , 2F , and 4F , 834 
and the model with mechanisms 3F  and 4F ) have reasonable performance (23-24% of 835 
variance unexplained); the others perform very poorly.  836 
4.3 Experiment 3 837 
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Experiment 3 determines sensitivity to a salient subset of second-order statistics across a 838 
range of gray levels. Specifically, we examined two kinds of correlations between adjacent 839 
checks: correlations that produced gradients (Fig. 5A), and correlations that produced streaks 840 
(Fig. 5B). Note that for a given number of gray levels, the luminance distribution is the same 841 
for the two kinds of stimuli, but the spatial organization differs.  842 

 Thresholds were measured in six subjects, using the same procedures as Experiments 1 843 
and 2. One subject, MC (an author) was also a participant in Experiments 1 and 2. 844 

For the gradients (Fig. 11A, left), thresholds were an inverted-U function of the number of 845 
gray levels, with texture-contrast thresholds of approximately 0.5c =  for 3 and 11 gray 846 
levels, and a maximal threshold of 0.7-1.0 for 5 gray levels. For the streaks (Fig. 11A, right), 847 
thresholds were 0.2-0.3 for all subjects, and independent of gray level. Thresholds were 848 
independent of the direction of the gradient or the orientation of the streak. 849 

 The thresholds predicted by the model are shown in Fig. 11B. The model predicts the 850 
inverted-U shape of the sensitivity function and its peak position, as well as the absolute 851 

Fig. 10. Psychophysical thresholds and model predictions for Experiment 2, which combines pairs of second-order 
statistics. Each pair of rows corresponds to an experimental group, delineated in Table S1. The upper row of each 
group shows experimental measurements; the lower row shows model predictions. The domains in each group 
combine a second-order statistic drawn from two genera, shown at the beginning of the rows, as delineated in Table 
S1. Individual domains are labeled according to the correlation species varied along the ordinate and abscissa, each of 
which is defined by a vertex within the genus’ triangular domain (e.g., Fig. 2). Barycentric coordinates of the vertices 
are indicated by d0 for (1,0,0) , d1 for (0,1,0) , and d2 for (0,0,1) . The first and fifth domains of Group I are 
shown in Fig. 4AB; the first domain and third domains of Group IV are shown in Fig. 4CD. Other plotting 
conventions as in Figs. 8 and 9.  
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thresholds at the extremes of the curve, but overestimates the threshold for 5 gray levels. For 852 
streaks, the model predicts the independence of gray levels and also predicts the absolute 853 
thresholds. 854 

 Fig. 11C shows the predictions of the alternate models in Fig. 8. With regard to the 855 
gradients, several of these models predict unreasonably high thresholds for 3 or 4 gray levels, 856 
far exceeding the psychophysical findings. The one model that does not fail in this fashion 857 
( 3F  and 4F  only) predicts a higher threshold for 7 gray levels rather than 5; all subjects 858 

Fig. 11. Psychophysical thresholds and model predictions for Experiment 3, gradients (left) and streaks (right). 
A: Individual subjects’ data. Uncertainties (2SEM) for individual subject thresholds are <0.05 and are not 
shown. B: Predictions of the model. C: Predictions (color) of alternate models whose first stage consists of a 
single mechanism with a threshold at mid-gray, or a subset of the Silva-Chubb mechanisms. The predictions of 
the full model are shown in black. Off-scale points correspond to predicted thresholds > 4. 
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showed the opposite behavior. With regard to streaks, most of the alternate models correctly 859 
predicted the finding that thresholds were approximately independent of the number of gray 860 
levels. However, the threshold predicted by the 3F  and 4F  only-model was lower than 861 
measured, and the thresholds predicted by the 1F , 2F , and 4F  model showed a near-862 
doubling of threshold as the number of gray levels increased from 3 to 11, also inconsistent 863 
with the data. 864 

In a quantitative analysis (Table 2), the accuracy of model predictions (27% of variance 865 
unexplained) is comparable to intersubject variability (21% of variance unexplained). Most of 866 
the alternate models do not perform as well. The model with mechanisms 3F  and 4F  867 
provides a better fit in this experiment (16% of the variance unexplained), but, as noted 868 
above, this model performs very poorly in Experiment 1 (none of the variance explained).  869 

 870 
5. Discussion 871 

This study examined sensitivity to visual textures, with the broad goal of understanding how 872 
neural computations analyze a high-dimensional sensory space. Visual textures constitute 873 
such a space, as their parametric description – local image statistics – includes not only the 874 
luminance distribution, but also spatial correlations among pairs of checks, triplets, etc. While 875 
human visual sensitivity to image statistics is selective [24], the number of perceptually 876 
relevant texture parameters is quite large. The visual system can detect texture differences 877 
based on several aspects of the luminance distribution in the absence of spatial correlations, 878 
and multiple kinds of spatial correlations, even for textures that only have black and white 879 
elements. Moreover, typical textures have spatial correlations and are not restricted to two 880 
luminance levels; the number of parameters required to describe spatial correlations grows 881 
rapidly as the number of luminance levels increase [20]. Here, to understand how such 882 
textures are processed, we examine perceptual thresholds for discrimination of several classes 883 
of textures that have multiple gray levels and also spatial correlations.  884 

Our main findings in Experiments 1 and 2 are that two observations previously made for 885 
black-and-white spatially-correlated textures [13] apply in this more general context: 886 
thresholds for negative and positive correlations are nearly equal, and signals from different 887 
local image statistics combine quadratically. The net result is that isodiscrimination 888 
thresholds, parameterized by local image statistics, are approximately elliptical. 889 

Our main finding in Experiment 3 is that gray-level distribution and spatial correlations 890 
interact: for one kind of spatial correlation (gradients), threshold for discrimination from 891 
randomness has a sharp maximum when 5 gray levels are present; for a second kind of spatial 892 
correlation (streaks), the threshold is approximately independent of gray levels. 893 

While this interaction is perhaps unsurprising, it provides empirical evidence that gray-894 
level distributions and spatial correlations are not merely processed independently. In an 895 
attempt to capture how these dimensions interact, we constructed a computational model to 896 
account for our findings, based on previous studies of gray-level textures without spatial 897 
correlations, and studies in our lab of spatially-correlated black-and-white textures. As the 898 
model is fully constrained by those previous studies, it has no free parameters. The model 899 
reproduces the qualitative features of our findings --the elliptical shape of the 900 
isodiscrimination contours seen in Experiments 1 and 2, and the interaction between the 901 
number of gray levels and spatial correlations seen in Experiment 3 – and provides a 902 
reasonable quantitative prediction of the thresholds as well.  903 

We note, however, that all of the stimuli are constructed with discrete, monochrome 904 
checks, so it is an open issue as to whether the approach extends to textures with continuous 905 
gradations and/or chromatic content. 906 
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5.1 The model 907 
The proposed model (Fig. 7) combines elements that process luminance distributions and 908 
elements that process spatial pattern in a novel manner. We emphasize that it is a 909 
computational model; its components are not intended to have direct physiologic correlates. 910 
 911 
The first stage of the model consists of a set of parallel mechanisms that process luminance 912 
distributions. Each mechanism transforms the visual input into a binary representation, 913 
assigning each check to 0 or 1 with a probability determined by the gray-level of the stimulus. 914 
The characteristics of these mechanisms – i.e., the way that the probability depends on gray 915 
levels ( mF , eq. (6))and their relative strengths ( mw , eq. (17))-- are taken from the studies of 916 
Silva and Chubb [16], in which they used a search task to measure discrimination of spatially-917 
uncorrelated gray-level textures. By using the Silva and Chubb mechanisms, our model is 918 
guaranteed to reproduce the key findings of Chubb and colleagues [14, 16, 17, 33]: that 919 
spatially-uncorrelated gray-scale textures form a three-dimensional perceptual space, and 920 
textures that are indistinguishable by these mechanisms are perceptually indistinguishable. 921 

The second stage confers the sensitivity to spatial correlations. Each of the internal 922 
representations produced by the first stage is analyzed by mechanisms sensitive to patterns in 923 
2 2×  clusters of checks. The second stage is thus sensitive not only to pairwise correlations, 924 
but also to third- and fourth-order correlations among nearest neighbors, as is needed to 925 
account for early observations concerning isodipole textures [34]. The way that signals from 926 
these local correlations combine (eq. (17)) is fully constrained by the requirement that the 927 
model accounts for discrimination thresholds for black-and-white textures, previously 928 
measured in our lab [13, 18, 27, 28], as detailed in the Supplemental Document,  929 
“Specification of the model’s quadratic form.”  930 

Our model can be viewed as a generalization of a “back-pocket” [15] framework: its first 931 
stage consists of several independent analyzers and their outputs are combined quadratically. 932 
But in contrast to the standard back-pocket model, the outputs of the analyzers are 933 
multivariate quantities that contain spatial information, rather than scalars. Correspondingly, 934 
the quadratic combination rule is a quadratic form, rather than a simple square law. This 935 
generalization allows for interactions between gray-level distributions and spatial pattern. 936 

The ability of the model to predict our findings, both qualitatively and quantitatively, 937 
depends not only on its overall structure, but also on the specifics of the model’s first stage: 938 
the four independently-identified Silva-Chubb mechanisms [16]. When these mechanisms are 939 
replaced by a simple threshold, or, when one or more of them are removed, the elliptical 940 
isodiscrimination contours of Experiments 1 and 2 are lost, and some thresholds are predicted 941 
to be unreasonably large (Fig. 8C-G). These alternate models also are not able to account for 942 
the interaction of the gray-level distribution and spatial correlations seen in Experiment 3 943 
(Fig. 11).  Alternate models also fall short in terms of quantitative prediction of the measured 944 
thresholds for first- and second-order statistics and their combinations (Table 2). 945 
5.2 Simplifications and approximations 946 
In keeping with the goal of focusing on the structure of the computations underlying texture 947 
processing and avoiding an explosion of parameters, the model makes substantial 948 
simplifications regarding the neural circuitry underlying spatial processing. Center-surround 949 
organization and orientation-tuned spatial filtering are not explicitly modeled. Instead, the net 950 
effect of checks surrounding the central element are lumped together into the stochastic 951 
threshold that converts the central check into an internal binary representation. As we don’t 952 
model “receptive fields” explicitly, we don’t take into account eccentricity-dependence of 953 
receptive field centers and surrounds (and consequent eccentricity-dependent changes in the 954 
typical number of checks within a receptive field). Finally, the nearest-neighbor correlations 955 
that define the textures necessarily induce longer-range correlations, but these are neglected – 956 
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the model’s sensitivity to spatial structure is determined only by configurations in a 2 2×  957 
block of checks, independent of eccentricity.  958 

These simplifications enable us to constrain the model based on previous studies – though 959 
this too entails some assumptions. The first-stage mechanisms are taken from previous studies 960 
with spatially-uncorrelated textures [16]. This makes the assumption that these mechanisms 961 
are unchanged when spatial correlations are present, and when the specific gray level 962 
distributions differ substantially. Further, the second-stage mechanisms we use to model the 963 
processing of spatial structure were determined from studies in which structured textures were 964 
discriminated from random ones [13]. Here they are applied to internal representations in 965 
which the comparison is between two non-random textures. The “translation invariance” 966 
needed for this generalization (i.e., that discrimination between textures with coordinates y  967 
and z  depends only on y z−

 

) is only approximate [28]. Moreover, these internal 968 
representations, though binary, are outside the stimulus set used in [13]: because of the action 969 
of the stochastic threshold, they are no longer maximum-entropy. 970 

Despite these approximations and simplifications, the agreement of the model with the 971 
experimental data is good -- but there are also specific systematic discrepancies that are larger 972 
than intersubject variability. Overall, the model underestimates the thresholds for first- and 973 
some second-order statistics, and overestimates the threshold for third- and fourth-order 974 
statistics. For some first- and second-order statistics, the orientation of the isodiscrimination 975 
ellipse is also not accurately predicted.  976 

While any of the above approximations and simplifications may contribute to the model’s 977 
inaccuracies, the overall under-prediction of low- order thresholds and over-prediction of 978 
high-order thresholds is expected to be very sensitive to the precise shapes of the operating 979 
curves of the first-stage mechanisms. Specifically, if the thresholds were slightly less 980 
stochastic – i.e., the curves transitioned more rapidly from 0 to 1 – then the balance would tilt 981 
towards the high-order correlations, as these rely on preservation of the image structure in 982 
multiple neighboring checks. The precise shapes of the first-stage mechanisms will also 983 
influence the orientation of the ellipses, as well the replacement of true surround subtraction 984 
by a stochastic threshold, as well as the neglect of correlations at larger spatial scales.  985 

While our focus is on a simple conceptual model for visual computations, the model’s 986 
structure is fully compatible with more elaborate, physiologically-realistic models. Our main 987 
building blocks – linear summation and pointwise nonlinearities – are typical building blocks 988 
of such models.  As mentioned above, the stochastic threshold is an approximation of the 989 
influence of the receptive field surround. Moreover, the nonlinearities required to extract 990 
third- and fourth-order spatial correlations are known to exist in primate area V2 [35], and 991 
emerge naturally in models of recurrent neural networks[36]. 992 
5.3 How visual modalities combine 993 
An important way in which the brain copes with the complexity of the visual world is to 994 
utilize separate regions or networks specialized for processing of visual modalities, such as 995 
orientation, color, shape, motion, and depth. While initial studies emphasized specialization 996 
and modularity[2, 37, 38], it is now well-recognized that these modules are not independent, 997 
as subsequent studies revealed both physiological and psychophysical evidence for 998 
intermixing [8, 9, 39-41].  999 

The model structure we propose presents a common theme for the way in which cross-1000 
modal interactions are structured. In our model, local luminance is processed by a parallel set 1001 
of mechanisms, each of which provides an internal representation that is then analyzed by a 1002 
second stage, which is sensitive to spatial correlation. Similarly, in Papathomas’ [39] study of 1003 
chromatic interactions with motion, local chromatic signals provide tags, which is then used 1004 
by a standard spatiotemporal analyzer to extract unambiguous motion. Non-Fourier motion 1005 
can be viewed in the same way: it can be detected by a cascade in which local flicker or local 1006 
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unsigned contrast becomes tokens that serve as a starting point for standard motion 1007 
analysis[42]. Finally, in studies of structure-from-motion [43], the spatial arrangement of 1008 
locally-extracted motion signals constitute an internal representation that is then analyzed for 1009 
shape. 1010 

Our model is a further elaboration on this theme. In the first stage of our model, multiple 1011 
internal representations are abstracted from the luminance image. At the model’s second 1012 
stage, each of these internal representations undergoes a spatial analysis. Each of these 1013 
transformations is both local and nonlinear, but the nonlinearities address different aspects of 1014 
the input:  luminance distribution and spatial structure. The net result is a computation that 1015 
could not be achieved by independent processing within these modalities.  1016 

 1017 
5.4 Relevance to visual processing of natural scenes 1018 

The computation captured by this model is central to efficient visual processing of natural 1019 
scenes. As has been proposed by the efficient coding hypothesis [44], the visual system is 1020 
tuned to take advantage of the distinctive statistical characteristics of natural visual inputs. 1021 
These characteristics include not only their well-known 21/ f  spatial power spectra [45-47], 1022 
but also, their luminance and local image statistics [23-25, 48].  Specifically, some kinds of 1023 
local image statistics are quite variable across natural scenes, and are therefore highly 1024 
informative, while others are relatively more stereotyped and/or predictable, and therefore less 1025 
informative. Importantly (and perhaps surprisingly), these previous studies [23-25] have 1026 
shown that the informativeness of different kinds of local image statistics in natural scenes is 1027 
closely correlated with visual sensitivity to these statistics when they are isolated in our 1028 
synthetic textures. Our model shows that the computations that implement efficient coding 1029 
can be accomplished in a compact fashion, that is, by combining the outputs of a small 1030 
number of local mechanisms (the first stage of the model) with a single quadratic nonlinearity 1031 
(the second stage of the model). 1032 

Note also that our findings are inconsistent with the notion that visual sensitivity to an 1033 
image statistic merely reflects the extent to which the statistic reduces entropy.  All texture 1034 
domains have a fully random (maximally entropic) texture at the origin, and, for small texture 1035 
contrasts, the reduction in entropy depends only on the distance from the origin (Appendix B 1036 
of [18]), independent of the domain or the direction of the displacement. The widely varying 1037 
sensitivities we observe, and the elliptical rather than circular isodiscrimination contours, 1038 
indicate that sensitivity varies widely across image statistics, even though they each reduce 1039 
entropy by the same amount.  This selectivity is inconsistent with coding entropy reduction 1040 
per se, but, as mentioned above, corresponds instead to the efficient coding of natural scenes. 1041 

Finally, we note that the efficient coding framework is also relevant to understanding 1042 
how the chromatic content of natural scenes is processed [49-52]; however, the present 1043 
analysis (and that of many others [21, 53-56]) is limited to their achromatic aspects. 1044 
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