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Abstract: Analysis of visual texture is important for many key steps in early vision. We study
visual sensitivity to image statistics in three families of textures that include multiple gray
levels and correlations in two spatial dimensions. Sensitivities to positive and negative
correlations are approximately independent of correlation sign, and signals from different
kinds of correlations combine quadratically. We build a computational model, fully
constrained by prior studies of sensitivity to uncorrelated textures and black-and-white
textures with spatial correlations. The model accounts for many features of the new data,
including sign-independence, quadratic combination, and the dependence on gray level
distribution.
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1. Introduction

One of the strategies that the visual system uses to grapple with the complexity of analyzing
natural sensory signals is to organize this analysis according to groups of attributes — for
example, orientation, color, motion, and depth [2]. For these classical submodalities of spatial
vision, this organizational strategy has well-recognized anatomical underpinnings, both at the
level of specialization of cortical areas and the tuning properties of their component neurons
[2-6].

Although the specialization of visual areas and the independence of processing within
submodalities is far from absolute [7-10], it is clear that computational “factoring” is an
important principle. That is, while a neuron may be tuned to more than one submodality of
spatial vision (e.g., its response may depend both on color and orientation), its selectivity can
often be understood by considering one submodality at a time. Conversely, it is rare to find a
neuron whose preferred spatial orientation changes as a function of the chromaticity of the
grating used to probe it. Intuitively, this arrangement is a natural consequence of parallel
visual streams and simplifies the logic needed to read out a pattern of neural activity.

Here, we ask whether this computational principle generalizes to another aspect of spatial
vision — visual texture. There are two ways in which texture differs from the classic
submodalities, and thus, two reasons that this generalization is not a foregone conclusion.
First, the connection between perceptual sensitivities and tuning properties of individual
neurons is likely to be less direct than for the classic submodalities: texture, by its nature,
cannot be signaled by a small number of localized receptive fields, as it is a statistical
characterization of an image across an extended region.

Second, the domain of visual texture is high-dimensional. The reason for this is that any
statistic that measures the joint probability of a set of luminance values in any given spatial
configuration is, potentially, a perceptual dimension for texture, i.e., a parameter for which
visual sensitivity may be tuned. Within this vast range of possibilities, visual sensitivity is
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highly selective — but nevertheless, there are a large number of such image statistics for which
visual sensitivity is substantial. [11-14].

To address whether computational “factoring” extends to texture, we measure visual
sensitivity to image statistics that incorporate two aspects of texture that are typically studied
separately: the distribution of luminance levels, and the spatial organization of the
correlations. We then construct a model for these sensitivities. The model has the familiar
“back-pocket” structure [15], but each channel of the model posits a specific way in which
analysis of image statistics can be separated into a component that is sensitive to the
distribution of luminance levels, and a component that is sensitive to spatial configuration.
The model’s parameters are then constrained by requiring it to account for two
complementary, pre-existing psychophysical datasets that do not overlap the current study:
sensitivity to differences in the luminance histogram in textures with no spatial structure [14,
16, 17], and sensitivity to differences in spatial configuration in textures with only two
luminance levels [13, 18]. Because of the model’s simple structure, it can be fully constrained
by this requirement, with no free parameters. We find that the model provides an approximate
account of the new psychophysical measurements, in terms of relative sensitivities to different
kinds of image statistics and how different image statistics combine.

2. Materials and methods

Our overall experimental strategy is to use synthetic visual textures to measure visual
sensitivity to image statistics and their combinations. As in previous work, a texture is
formally defined as an ensemble of infinitely large images, with the requirement that its
statistics can be equivalently estimated either by averaging a single sample over all of space,
or averaging across many examples of a finite patch[18, 19]; our stimuli consist of random
samples drawn from such an ensemble. The textures we consider here are all composed of
monochrome checks, and the statistics we consider are all local correlations, i.e., the average
value, across the ensemble, of a product of luminances of checks at specific relative
displacements.

Despite these restrictions, a practical challenge remains: the number of image statistics
required to specify a texture is enormous [20, 21]. This challenge, along with a range of
theoretical considerations [18, 22-25], motivates the adoption of the “maximum-entropy”
approach used here: a small number of image statistics are specified explicitly, and the
texture ensemble is constructed to be as random as possible, given these constraints.

In this work, the constraints are the luminance distribution and correlations of checks
within a 2x 2 neighborhood. We use a 2% 2 region (here, and in previous studies that this
work builds on [13, 18, 26-28]) because it is the smallest region that enables specification of
textures with contours and corners in multiple directions, as well as T-junctions and X-
junctions.

This approach provides a practical dimension reduction and also one which, perhaps
surprisingly, is related to the statistics of natural images[24, 25]. Our approach is related to,
but distinct from, the “FRAME” approach to texture synthesis of Zhu et al. [22]. While both
are maximum-entropy approaches, FRAME uses constraints that are neurally-inspired linear
spatial filters applied to the image (and thus, also encompasses the original texton approach of
Julesz [29, 30]); here, the constraints are nonlinear combinations of local luminances.

Psychophysical measurements of sensitivity to individual image statistics and their
combinations were made by using the texture segmentation task introduced by Chubb et al.
[17] and used in many previous studies in our lab [13, 18, 26-28] for black-and-white
textures. Here we describe an extension of this approach to multiple gray levels. We then
detail the psychophysical task, experimental procedure, and data analysis. Construction of the
textures is detailed in the Supplemental Document (“Specification and construction of
textures”). This construction maintains the maximum-entropy property of the black-and-white
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construction [18]: textures are as random as possible for the image statistics that are specified.
Because of this maximum-entropy property, the textures contain the minimal visual structure
that is required to achieve the specified image statistics.

A portion of the psychophysical data presented in Experiments 1 and 2 has also been
presented in [23], but without many of the experimental details.

2.1 Stimuli for experiments 1 and 2

Experiments 1 and 2 extend the analysis of black-and-white textures [18] to textures with
three luminance levels. In the binary context, we developed a coordinate system for image
statistics that comprehensively described all kinds of correlations within a 2x2
neighborhood of checks; we now expand the coordinate system to take into account multiple
luminance levels.

In the case of black-and-white textures, image statistics are grouped according to “order”,
i.e., the number of checks that are multiplied to calculate the statistic. For example, the first-
order statistic specifies the luminance distribution of individual checks, and the second-order
statistics describe the pairwise correlation of luminances in a pair of checks. There are four
second-order statistics, since there are four kinds of two-check correlations to be considered:
between two checks that are adjacent horizontally, vertically, and along each of the two
diagonals. Each statistic thus specifies the expected value of the product of the luminances of
horizontally adjacent, vertically adjacent, or diagonally adjacent check pairs, averaged across
all samples of the texture. Similarly, there are four third-order statistics, corresponding to the
four ways of selecting three checks within a 2x 2 neighborhood; each statistic specifies the
expected value of the product of three luminances. Finally, there is one fourth-order statistic;
it specifies the correlation among all four checks, i.e., the product of the four luminances.

To extend this scheme to multiple luminance levels, we group image statistics according
to order (the number of checks whose luminances are multiplied), and subdivide each order
according to the spatial configuration of the checks. However, each of these subdivisions now
becomes a family of statistics, as more than one parameter is needed to describe the
correlations among checks in a given configuration (Table 1). Furthermore, each family (other
than first-order) subdivides into independent genera based on the rule that links the luminance
values within each configuration; each genus in turn contains several species -- the individual
statistics that specify the distribution of values created by this rule. (We are borrowing the
standard taxonomic nomenclature — order, family, genus, and species -- for a hierarchy that
arises out of mathematical considerations, but we do not intend to imply a hierarchical
structure for the visual computations). The need for this structure becomes apparent when we
consider three or more luminance levels and statistics of order two or more; these play a key
role in the first two experiments.

First-order statistics

First-order statistics describe the distribution of luminance level values assigned to each
check. When three levels are present, the distribution is specified by the probability that a

check is black (0), gray (1), or white (2). This is a three-element vector, (p(0), p(1), p(2)),
which we denote as 5'(1) . Since the probabilities of black, gray, and white checks must sum to
1, there are two degrees of freedom, so this family requires two image statistics — the
“species” within this family.

We represent these two degrees of freedom as barycentric coordinates (page 216 of [1]) of
a triangular domain (Fig. 1), whose vertices correspond to textures that are all black

6, =(1,0,0), all gray &, =(0,1,0), or all white &, =(0,0,1). The centroid of the
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there was only one degree of freedom for first-order statistics— since the fraction of black and
white checks must sum to 1. This single degree of freedom was captured by a single

parameter ¥, where (14 %)/2 is the probability of white checks, and (1—y)/2 is the

probability of black checks. The final two columns of Table 1 specify the correspondence
between the barycentric coordinates, which apply to any number of gray levels, and the binary
coordinates introduced in [18] and used in previous studies.

(0,0,1)

(0,1,0)

(1,0,0)

Fig. 1. The domain of the first-order statistic 5'(1) for three-level textures. 6'(1) is a three-element vector whose

entries correspond to the probability of black, gray, and white checks, respectively. Since these three values must
sum to 1, they can be considered as barycentric coordinates [1] (page 216) for a triangle. The vertices of the triangle
are the extreme points of the domain, and correspond to the probability distributions that are all black

5'(1) = (l, 0, 0) , all gray 5'(1) = (0, 1, 0) , or all white 5'(1) = (0,0,l). The centroid of the triangle, which
11

—, —) , corresponds to a random texture.

37373

corresponds to 5'(1) =(
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Second-order statistics

For second-order statistics, we detail the family of statistics that describe correlations
between two horizontally-adjacent checks; the other three families of second-order statistics,
which describe correlations in vertical and diagonal directions, are handled similarly.

There are nine ways that a pair of horizontally-adjacent checks can be colored by three

(0,1,0)

(0,1,0)

Fig. 2. The domains of the second-order statistics 5'(] N (A) and 5'(1 2 (B) that capture the pairwise

correlation of luminance levels in horizontally-adjacent checks. Within each domain, a three-element vector
5'(1 s (s =1 inpanel A, s =2 in panel B) describes the kind of horizontal correlation. Specifically, the

elements of & D) give the probability distribution of A1 + SA2 (mod 3) , where A1 and A2 are the

luminance values of the checks (0 for black, 1 for gray, 2 for white). Since the three values of each 5'(1 5

are a probability distribution and therefore sum to 1, the domain of each vector forms a triangle (as in Fig.

1). The vertices of the triangle, 5(1 5 =(1,0,0), 6'(1 9 =(0,1,0), and 5'(1 5 =(0,0,1),

correspond to textures in Al + SA2 is either always 0, always 1, or always 2. Therefore, the textures at the

vertices have rows that are completely determined by their initial check. Also as in Fig 1. (and as in all other
triangular domains), the centroid of the triangle corresponds to a random texture.
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luminance levels. We denote these nine probabilities by p(A1 Az), where A, and 4,

denote the luminances (0,1, or 2) assigned to the two checks. These nine probabilities must
sum to 1. There are additional constraints implied by the first-order statistics. For example,

summing p(A1 Az) over A, must yield p(Al), and summing p(A1 A2) over 4,
must yield p(A2 ) Consequently (see Supplemental Document), there are four degrees of

freedom for the second-order statistics that describe horizontal correlations.

These four parameters can be grouped into two independent triangular domains (Fig. 2),
the “genera” for this family. The first domain (Fig. 2A) links luminance values by

constraining the distribution of 4, + 4, (mod3) (here, as is standard, “mod 7> denotes the
remainder after division by 7 ); the second (Fig. 2B) links luminance values by constraining
the distribution of 4, +2A4, (mod3) . In each case, the possible values of the sum are 0, 1,
or 2, so the distribution of the sum is described by a three-element vector of elements that sum

to 1. We denote these vectors as 5(1 , for A+ A, and 5(1 5 for A +2A4,: the

subscripts indicate the values of the multipliers and their positions within the 2x2
neighborhood. As for the first-order statistic 5(1), the vertices of each triangle correspond to

extremes of the distribution, in which only one value of the sum occurs. The centroid of the
triangle corresponds to the random texture, where each value of the sum has probability 1/3 .
Inspection of the texture samples at the vertices of these triangular domains shows that

5'(1 I and 5(1 2 describe quite different aspects of pairwise correlations. For 6(1 n (Fig.

2A), each extreme texture consists of two kinds of rows: rows that contain only one
luminance level, and rows that contain alternation of the other two levels. For example, for

o 5 =(1,0,0) (bottom vertex of the triangle in Fig. 2A), luminance values of

horizontally-adjacent check pairs must sum to 0 (mod 3). Thus, the only allowed pairs are
(0,0), (1,2), and (2,1), so every row is either only black, or alternating white and gray.

Similarly, for 6;; |, =(0,0,1) (top vertex of the triangle in Fig. 2A), luminance values of
horizontally-adjacent checks must sum to 2 (mod 3). Thus, the allowed pairs are (1,1),
(2,0), and (0,2) and every row is either only gray, or alternating white and black.

In contrast, the textures for 5'(1 2 have very different characteristics (Fig. 2B). At the
bottom vertex, G, ,, =(1,0,0) specifies that 4 +24, is always equal to 0 (mod 3). This
is equivalent to 4, = A, (mod3), so all rows contain just one luminance level. The other

two vertices of the domain correspond to rows that cycle between the colors. For the right
vertex, G, ,, =(0,1,0), the coloring (reading from left to right) cycles from white to gray

to black, since G, , =(0,1,0) means that 4 +24,=1(mod3), so
A, =A —1(mod3) and the allowed pairs are (2,1), (1,0), and (0,2). For the top
vertex, 0, ,, =(0,0,1), the coloring cycles in the opposite order, since &, ,, =(0,0,1)
means that 4 +2A4, =2 (mod3), so 4 =4,+2=4,—1(mod3), yielding the
allowed pairs (0,1), (1,2), and (2,0).
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(1,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

Fig. 3. A. The domain of the third-order statistics 6'(1 1) that describes the correlation among the three checks
1

4 4
[Al 2] , according to the distribution of 4, + 4, + 4, (mod3) . B: The domain of the fourth-order statistics 6'(1 2]
3 21

A A
that describe correlations of luminance levels among the four checks { ! 2] according to the distribution of
3 4

A +24, +24, + A, (mod3) . Other notations and plotting conventions as in Figs. 1 and 2.

Because the two combinations A4, + A4, (Fig. 2A) and A4, +2A4, (Fig. 2B) that define the

two genera are linearly independent, their probability distributions can be specified
independently; we exploit this in Experiment 2.
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The same parameterization strategy can be applied in the other grid directions, yielding a
pair of vectors 5'(1] and 5'(1] for the genera within the family of correlations between pairs

1 2

of checks that are vertically adjacent, the vectors 5'(] , O . for the genera within the
Jol

2

family of correlations in the upper-left to lower-right direction, and 5'[ 1> and o |y for
RS

the genera within the family of correlations in the upper-right to lower-left direction. We refer
o &[1] as “cardinal second-order correlations,” and to &[1 ] and & ) as
S . )

“diagonal second-order correlations.” Each of these eight genera have two degrees of freedom
(“species”), corresponding to the triangular domain of the distribution of values for its linear
combination. Thus, there are a total of 16 free parameters for the second-order correlations:

1

four families of vectors G, ,, 5'[
s

js 5'(1 j» 5'( 1), each with two genera (5 =1 and

s =2), and these eight vectors each occupy a triangular domain. This is a substantial
expansion compared to the black-and-white case, where there were a total of 4 free

parameters ( S, ﬂ‘, B, .and B, ; see Table 1).

We also mention the correspondence to the notation of [23] for second-order statistics: the
subscripts 1 or 2 of &, used here, correspond to the subscripts + and — of £ in [23]. The
numerical notation used here generalizes more readily to multiple gray levels.

Third- and fourth-order statistics

The analogous approach provides a parameterization of third- and fourth-order
correlations. For example, there is a family of third-order statistics corresponding to the

Al AZ

A J
correlations among the three checks in the I_ -shaped region [ 3 . This family is
subdivided into four genera, corresponding to the distributions of the four sums

A+ A+ A4, (mod3) A +A4,+24, (mod3) A +24,+ A, (mod3)

4 +24, +24, (mod3) , which are linearly independent. As in the second-order case,
each of these genera is a triangular domain, whose coordinates indicate the probability that the

sum A +5,4, + 5,45 is0, 1, or 2.

and

11

Fig. 3A shows the domain parameterized by 5[
1

) , the vector that specifies the distribution

of the sum 4, + A4, + A, (mod3) . At the bottom vertex of the triangle, 5'(1 y=01,0,0),
a

so 4+ A,+ A, =0 (mod3). Since this relationship holds whenever the three 4, ’s are

equal, the resulting texture contains I_ -shaped regions uniformly black, gray, or white. At the
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other two vertices, 4, + A4, + 4, =1 (mod3) or 4 + A, + A4, =2 (mod3). Every [ -
shaped region therefore must contain at least two different luminance levels. Since there are

four possible orientations of a I_ -shaped region, there are four such families of third-order
statistics (each with the analogous four genera, and two degrees of freedom in each genus),
for a total of 32 independent third-order statistics.

At fourth-order, there is a single family, corresponding to the entire 2x 2 neighborhood.

12

Fig. 3B shows an example domain, corresponding to the genus 5'[
201

} , which specifies the

distribution of 4, +2A4, +2A4, + A, (mod3). At the bottom vertex of this domain, where

O'[1 » =(1,0,0), the texture has uniform 2Xx2 regions of all luminance levels. This is
1)

because A +24,+24,+ A, =0 (mod3) is equivalent to
A+ A, =A4,+ A4, =0 (mod3), which holds for any constant value of the 4, . In total,

there are 16 independent fourth-order statistics, corresponding to the eight genera, 5{1 N
1 1}

On e O v O ovs O 1y Ofp oy Gll,and Glz,eachofwhichisa
11 21 21 12 12 22 2 2

triangular domain with two free parameters. For further details and correspondences to the
black-and-white case, see Table 1 and the Supplemental Document (“Specification and
construction of textures”).

Experiment 1: Individual texture statistics, three luminance levels

Experiment 1 quantifies sensitivity within each of the triangular domains (genera)
described above: one first-order domain (Fig. 1), eight second-order domains (two examples
shown in Fig. 2), 16 third-order domains (an example shown in Fig. 3A), and eight fourth-
order domains (an example shown in Fig. 3B). The burden of studying these 33 domains, each
containing two degrees of freedom, may be reduced by recognizing that many of them are
interrelated by spatial symmetries. For example, exchanging horizontal and vertical axes

G, O, G, . & G,
. O
interconverts (¢ ¥ and \Y, \%» and V2 /. \B %) oand % S ete

Additional symmetries include mirror-flips and 90-deg rotations. Previous work with black-
and-white textures showed that statistics related by these symmetries had the same thresholds
[13], and, in preliminary experiments, we verified that this equivalence held for the cardinal
second-order correlations in the textures with three luminance levels. We therefore limited our
analysis to 12 domains, from which all other domains could be obtained via a symmetry

. . . O .
operation. These domains were: the first-order domain ~ (V; the second-order domains

— — — — —

= = O'(l ] G[l ) G[l 1] O-[l 1] 6[1 2]
O O . .
an =a 2 : , and 2 ; the third-order domains : , 2 , and 2 ;

Ty T6y B
and the fourth-order domains ' ! , b2 22 , and 21

>

10
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To measure sensitivity to these statistics, we determined psychophysical thresholds in a
standard texture-segmentation task ([17], described below) via a method of constant stimuli.
For each threshold measurement, stimuli were defined by equally-spaced points lying along
12 rays in the triangular domain. Each ray began at the origin of the domain (the random
texture) and extended either towards a vertex, or to points that were equally spaced along the
edges of the domain. The distances of the endpoints from the origin were chosen based on
pilot experiments so that the texture contrasts would capture the transition between
subthreshold and suprathreshold performance. For the first-order statistics, an additional set
of 12 rays were interleaved to better delineate the threshold behavior. These specifics are
detailed in the Supplemental Document, Figure S1.

For construction of psychophysical curves and quantification of thresholds, the texture
contrast ¢ is defined as the distance from the origin (i.e., the centroid of the domain), scaled
so that the vertices of each domain have a texture contrast of 1.

Experiment 2: Pairs of texture statistics, three luminance levels

Experiment 2 quantifies sensitivity to combinations of image statistics drawn from
different triangular domains (genera). We focused on combinations of cardinal second-order
statistics, as sensitivity to these statistics was high, and included interactions between image
statistics that specify correlations in the same spatial orientation (i.e., between two image

statistics from the 6(1 5 ~family) as well as interactions between image statistics that specify

1

correlations in different orientations (i.c., between the 5'(1 5) -family and the 5'[
s

] -family).

Fig. 4A,B shows stimuli that probe interactions between correlations in the 5'(1 9 -family,
but drawn from different genera: 5'(1 ;) (along the abscissae of the panels) and &(1 » (along
the ordinates of the panels). The panels differ in terms of the species of the 5'(1 ;) genus that
lies along the abscissa: in Fig. 4A, it is in the direction of the (I,0,0) -vertex of the &, -
domain; in Fig. 4B, it is in the direction of the (0,0,1) -vertex. In both cases, the ordinate is

in the direction of the (I,0,0)-vertex of the &, , -domain. Not all combinations of

coordinates are represented in these panels, because extreme values of one coordinate limit
values of the other — but these limits were beyond the range needed to determine thresholds.

Fig. 4C,D shows stimuli that probe interactions in different spatial directions: 5'(1 , along
)

the ordinate, and 5(1 2 along the abscissa. In both cases, the ordinate is in the direction of

1

the (1,0,0) -vertex of the 5[
2

]-domain. In Fig. 4C, the abscissa is in the direction of the

(1,0,0) -vertex in the &, ,,-domain; in Fig. 4D, the abscissa is in the direction of the

(0,1,0) -vertex of that domain.
Experiments were organized into four groups. Group I examined interactions between

different statistics with the same family (& and 5'(1 2)» as in Fig. 4A,B); the other

T n
groups probed interactions between statistics from different families, describing correlations

11
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Fig. 4. The domain generated by specifying a pair of cardinal second-order statistics. In each case, the random texture

is at the origin, indicated by the intersection of the two solid black lines. Panels A and B: The statistics are &, ,, and
- . . . L - . 144
G 1 » both specifying horizontal correlations. In A, the abscissa indicates values of &, |, ranging from (5,5,3)

to (1,0,0) ; this corresponds to the ray pointing towards the lower vertex of Fig. 2A. The ordinate indicates values of

G, ,, over the same range; this corresponds to the ray pointing towards the lower vertex of Fig. 2B. Steps along

. 2 1 1 . . . . s
each axis are equal to (5,—5,—5) . In B, the ordinate is the same as in A, but the abscissa now indicates values of

4

G, ,, ranging from (g,;,é) to (0,0,1), corresponding to the ray pointing towards the upper vertex in Fig. 2A.

Here, abscissa steps are equal to (—é,—%,g). Panels C and D: The statistics are &, ,, and &[1] , specifying
2

horizontal and vertical correlations, respectively. In C, the abscissa indicates values of &, ,, , ranging from

(é,g,g) to (1,0,0) ; this corresponds to the ray pointing towards the lower vertex of Fig 2B. The ordinate indicates
values of 6'(1

] over the same range; this corresponds the same kind of correlation, but now in the vertical direction.
2

Steps along each axis are equal to (%,—é,—é) . In D, the ordinate is the same as in C but the abscissa now indicates

values of &, ,, ranging from (g, ) to (0,1,0), corresponding to the ray pointing towards the right vertex in

14
9’9
. . 12 1 . ..

Fig. 2B. Here, abscissa steps are equal to (—5,6,—5). In all panels, the coordinates at the origin are equal to

(

), corresponding to the random texture.

W | =

11
3737
in orthogonal directions, &, ,, and 6-(1): with (s,5") = (1,1) in group 11, (s,s") =(1,2)

s

12



309

310
311
312

314
315

316

317
318
319

320

321
322
323

325
326
327
328
329
330
331
332
333

334
335

336
337

338
339
340

341
342

343
344
345

346
347

348

in group IIL, and (s,s") =(2,2) in group IV (the latter shown in Fig. 4C,D). These domains

included 22 pairs of statistics, each sampled along rays in 12 equally-spaced directions. As
was the case for Experiment 1, the positions of the three points sampled along each ray were
determined by pilot studies to ensure that they would be effective for measuring thresholds;
further details are provided in the Supplemental Document, Figure S2 and Table S1. Also as
in Experiment 1, texture contrast ¢ is defined as the distance from the origin, scaled so that

the vertices of each domain have a texture contrast of ¢ =1.
2.2 Stimuli for experiment 3

The last set of experiments makes use of textures with up to 11 luminance levels. We focused
on second-order statistics that provided tests of the computational model complementary to
the data of Experiments 1 and 2. Specifically, we selected members of the second-order

families 5(1 5 and 5[1] that specify progressively smoother gradients as further gray levels
s’

were added, and a contrasting set of statistics that does not specify gradients.

The textures that probe these statistics are shown in Fig. 5, for the number of gray levels
(3,4, 5,7, and 11) used in these experiments. Within each of the “gradient” stimuli (the
individual patches in Fig. 5A), luminances tend to increase gradually in one direction (here,
left-to-right), and then reset abruptly from white to black. This progression is clearest for the
examples with maximum correlation strength (¢ =1). In the “streaks” (Fig. 5B), luminances
of adjacent checks (here, horizontal) tend to match, leading to elongated streaks as correlation
strength increases. In all cases, a correlation strength of 0 corresponds to the random texture,
and the maximum correlation strength is 1.

The statistics underlying these textures are specified by an extension of the formalism

used above for three-luminance textures (see Table 1 and Supplemental Document). The G
gray levels are designated by 0, 1, ..., G —1, where, by convention, we take 0 to indicate a
gray-level of black, and G —1 to indicate a gray-level of white. A horizontal second-order

image statistic G, , is specified by a vector (V,V,,...,V;_;) of length G , each entry v,

is the probability that A, +s54, =h (mod G). Vertical second-order image statistics &[lj
N

are specified analogously. All coordinates are non-negative and must sum to 1, and the
random texture corresponds to a vector (V,,V,,...,V,_,) with all entries equal to 1/ G . Note

that G, the number of gray levels, and ¢, the texture contrast, are independent. The G gray
levels always include black and white and G —2 equally-spaced intermediate values, and

each gray level occurs in 1/ G of the checks. Independently, ¢, the texture contrast,
indicates the departure of the spatial arrangement from randomness.
A left-to-right gradient texture can be represented in these coordinates as follows. In a left-

to-right gradient, the probability that A, = 4, +1 is increased. This is equivalent to an
increase  in  the  probability  that A4 —A, =—1(modG), ie., that
A4, +(G-1)4, =G -1 (mod G). Thus, the relevant image statistic is G, _,, and its

final (G —1)th) entry captures this increase. Since the bias increases linearly with
correlation strength, the parameterization of this gamut of textures is given by

5-(1 G-1) — (l_c)(éaé:---’%;é)"‘c(o: O,---,O,l) . (1)
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At maximum correlation strength (¢ =1),G—1 is the only permissible value of
A +(G-1)A4, (modG), so that 4, = 4, +1 (mod G) -- yielding a strict gradient with

luminances increasing to the right. At zero correlation strength (¢ = 0), all values are equally
likely, yielding a random texture. These conventions are consistent with that of Experiments 1
and 2, in which ¢=0 corresponds to a random texture and ¢ =1 corresponds to a
maximally-structured texture at a vertex of the domain.

A Stepped Gradients
. G=3 \ ; ;ME |
G=4
G=5
G=7
G=11
B.
G=3
G=4
G=5
G=7
G=11

¢=0.0 ©=0.25 ¢=10.5 ¢=0.75 ¢=1.0

Fig. 5. Examples of textures used in Experiment 3: gradients (A) and streaks (B). Number of gray levels
indicated by G . Gradient textures have a directionality — in the examples shown here, from left to right. In
the direction of the gradient, the choice of luminance in each check is biased towards a stepwise increase
from black to white, followed by an abrupt decrease to black. This is most evident in the examples with
maximal correlation strength (right end of each row, c¢=1): here, luminances in each row of checks
progressively increase from black to white and then reset to black; the phase of each row is random. Streak
textures (B) have an orientation — in the examples shown here, horizontal -- but not a directionality. Along
the specified orientation, the choice of luminance in each check is biased to match its neighbor. At maximal
correlation strength (right end of each row, c¢=1), this results in rows of checks whose luminance is
constant. In all cases, a correlation strength of 0 corresponds to the random texture.
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Similarly, a leftward gradient texture is specified by increasing the probability that
A, =4 —-1,ie,that 4 —A4, =1 (modG). So these textures are parameterized by

Gy oy =1=0) (&, 50, 8)+¢(0,1,...,0,0) . )
Streaks are created by increasing the probability that A4, =4, ie., that
A — A, =0 (mod G) . Thus, streaks are parameterized by

= _ 1 11

G o =(1=0) (&8 o5) +¢(1,0,...,0,0) G
Downward and upward gradients and vertical streaks are parameterized in a similar fashion,
with G, | | replacing G, ¢,

o)
As in Experiments 1 and 2, ¢ =0 corresponds to the random texture and ¢ =1

corresponds to maximal correlation strength — periodic ramps for the gradient texture (egs. (1)
and (2)), and unbroken lines of constant luminance for the streak texture (eq. (3)).

2.3 Subjects

Studies were conducted in 10 normal subjects (3 male, 7 female), ages 21 to 55. Two of the
subjects (MC and SR) were experienced psychophysical observers. MC, SR, and JB are
authors; LE assisted with the studies; the other observers were naive to the purposes of the
experiment. All subjects had visual acuities (corrected if necessary) of 20/20 or better.

Experiment 1 was conducted in five subjects (MC, SR, NM, WC, ZA) for all first- and
second-order statistics, and for all third- and fourth-order statistics for which thresholds could
be obtained. For Experiment 2, group I was conducted in MC and WC, group II in MC and
ZA, group III in MC and JB, and group IV in MC, WC, ZA, and JB. Experiment 3 was
conducted in six subjects (MC, IL, LE, YCL, EFV, PJ).

This work was carried out in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), following approval of the Institutional Review Board
of Weill Cornell, and consent of the individual subjects.

2.4 Segmentation task

For the three experiments, segmentation thresholds were measured in a four-alternative task
adapted from the one developed by Chubb et al., [17] and identical to what was used in
related previous studies[13, 27, 28]. We describe it below for the reader’s convenience, along
with the initial analysis steps.

All stimuli consisted of 64 x 64 arrays of checks; each contained an embedded 16 x 64
rectangular target whose outer edge was 8 checks from one of the four sides of the array.
Target and background regions were filled either with a structured texture drawn from one of
the domains described above, or a contrasting texture. The contrasting texture was fully
random, i.e., each check was independently colored with one of G equally-spaced luminance
values from black to white, each with probability 1/ G (G =3 in Experiments 1 and 2;
G €{3,4,5,7,11} in Experiment 3). To ensure that the subject performed the task by

identifying a texture boundary, rather than a texture gradient [31], half of the trials had a
structured target on a random background and half had a random target on a structured
background. Examples of both kinds of stimuli (structured target on random background,
random target on structured background) are shown in Fig. 6A, and the four alternative target
positions are shown in Fig. 6B.

As previous work showed no consistent threshold difference between these conditions, we
pooled data across this randomization. We also found no consistent difference between
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399

Structured target on
random background

RN

Random target on
structured background

>

500 ms

stimulus

ready

B_ C_ 300 ms

Fig. 6. A: Stimulus examples for the three experiments. Stimulus parameters: Experiment 1, from domain of Fig.
2A, with &, |, =[0.75,0.25,0] (texture contrast ¢ =0.66); Experiment 2, from domain of Fig. 4C,

2

G 2 =[0.6218 0.18910.1891] and 6'(‘] =[0.5 0.25 0.25] (texture contrast ¢ =0.5); Experiment 3, from Fig. 5A,

with G =11 gray levels and texture contrast ¢ =0.8 . All of these texture contrasts are suprathreshold. B: The four
alternative target positions. C: Trial timeline.

thresholds for horizontal vs. vertical stimuli in Experiment 3, and therefore pooled across
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these conditions. Note also that, while this task has a “global” component in the sense that
evidence can be pooled across the entire stimulus, this global aspect is constant across all
stimuli; the limiting factor is the information contained in local correlations, which is
stimulus-dependent.

In Experiment 1, each test session explored a triangular domain specified by a texture-
statistic genus; examples of these domains are shown in Fig. 1 (first-order), Fig. 2 (second-
order), and Fig. 3 (third- and fourth-order). Second-, third-, and fourth-order domains were
sampled along 12 rays (Fig. S1A,B); the first-order domain was sampled along 24 rays (Fig.
S1C) in separate sessions of 12 rays each. Three texture contrasts were chosen along each ray
to span the range from near-chance performance to near-perfect performance in pilot
experiments, or, if performance did not achieve near-perfect performance, at texture contrasts
(c)of 1/3.2/3, and 1. A single test session contained 8 examples of stimuli specified by
all three texture contrasts on the 12 rays; these 8 examples included each of the four target
positions, and in both target-structured and background-structured conditions, yielding
3x12x4x2 =288 unique trials, presented in random order. We collected responses to 15
such 288-trial blocks from each subject, yielding 120 judgments for each of the three contrast
levels on each ray. For third- and fourth-order statistics, results from two subjects (MC, SR)
showed that sensitivity was largely restricted to a subset of three rays; in these domains, the
other subjects (NM, WC, ZA) were tested with only these three rays. In these cases, blocks
contained 32 examples of each contrast level on each ray and 4 such blocks were obtained,
yielding 128 judgments for each contrast level on each ray.

Experiment 2 was organized similarly, with each test session devoted to a domain
specified by a pair of second-order texture statistics; examples are shown in Fig. 4 and the
sampling strategy is given in Table S1 and Fig. S2.

In Experiment 3, each test session consisted of stimuli with a fixed number of gray levels
(3,4,5,7,or 11), and included both gradient stimuli (egs. (1) and (2)) and streak stimuli (eq
(3)). To cover the range of performance, five texture contrasts were used:
c€{0.2,0.3,0.45,0.6,0.8} for the gradient stimuli, and 2/3 of these values for the streak

stimuli. There were 6 kinds of stimuli: gradients in each of the four cardinal directions
contrasted with the random texture, and streaks in horizontal and vertical orientations
contrasted with the random texture. As in Experiments 1 and 2, targets appeared in each of
four possible positions, and the textures used to render the target and background were
swapped in half of the trials. Thus, there were 5x 6 x4 x 2 =240 unique trials, presented in
random order. We collected responses to 12 such blocks from each subject, yielding 96
judgments for each of the five contrast levels and the six kinds of stimuli.

We collected data from six subjects (MC, IL, LE, YCL, EFV, PJ) for 3, 5, and 11 gray
levels and in four of these (MC, YCL, EFV, and PJ) for 4 and 7 gray levels.

2.5 Procedure

The procedure for the three experiments was similar to that of previous studies [13, 27, 28]
and is summarized here. A Cambridge Research ViSaGe system, running custom Delphi
software produced the stimuli and collected responses. Stimuli were displayed on an LCD
monitor (mean luminance of 23 cd/m?, refresh rate 60 Hz), beginning 300 ms after the subject
pressed a “ready” button. Stimuli had a duration of 120 ms, and were followed by a 500-ms
mask consisting of checks that were half the size of the stimulus checks, randomly filled with
the luminance levels used in the experiment (see Fig. 6C for the timeline). The display size
was 15x15 deg (64%x64 checks, 14.8 min each, each check consisting of 10x10 monitor
pixels); viewing was binocular at 100 cm, and contrast was 1. Note that the checks were
sufficiently large so that, even at the edges of the display, they were plainly visible[32], and
previous work with black-and-white textures showed that thresholds are approximately scale-
invariant at and below this check size [13]. ViSaGe software and its photometer was used to
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linearize the monitor’s output via a look-up table, which was recalibrated prior to each
experimental session. Thus, the luminance levels used ranged from 0 cd/m? (black checks) to
46 cd/m? (white checks). The gray checks in Experiments 1 and 2 were 23 cd/m?; the gray
checks in Experiment 3 had luminance levels equally spaced between 0 and 46 cd/m? — for
example, for G =5, the luminance levels were 0, 11.5, 23, 34.5, and 46 cd/m?.

Subjects were informed that on every trial, a target would be present, and was equally
likely to be in any of four positions (top, right, bottom, left), which they were to indicate by
pressing the corresponding button on a four-button response box. They were asked to fixate
centrally and not attempt to scan the stimulus. Trials were self-paced, triggered by a separate
button-press. Inexperienced subjects received practice of approximately two hours to become
accustomed to the brief stimulus presentation time and to practice maintaining central fixation
without scanning. During practice, but not during data collection, subjects received auditory
feedback for incorrect responses.

2.6 Analysis

For each stimulus type (i.e., for each ray in the texture domains of Experiments 1 and 2, and
for each kind of gradient or streak in Experiment 3), we determined the texture contrast
threshold for segregation, via a procedure similar to that used in previous studies [13, 26, 27],
as summarized here. First, for each set of responses to a given stimulus type, we found the
maximum-likelihood fit of a Weibull function to the observed fraction correct (FC):

FC(c) = % + %(1 _ el ) . )

As above, c is the texture contrast, defined as the distance to the fully random texture (the
centroid), normalized by the distance from the vertex to the centroid. a, is the fitted threshold
(i.e., the value of ¢ at which FC=0.625, halfway between chance (0.25), and perfect (1.0)),
and b_ is the Weibull shape parameter. As previously reported [13, 27], the shape parameter

b, typically had similar values across rays, with overlapping confidence limits that usually

included the range 2.2 to 2.7. Since our focus is on determining the thresholds, we then refit
the data from each experiment by a set of Weibull functions that shared a common shape

parameter b, while allowing the threshold parameter a, to vary freely across rays. This

procedure reduced the number of free parameters without altering the quality of the fit to
Weibull functions. 95% confidence intervals were determined via 1000-sample bootstraps.

Note that this procedure could yield an estimated threshold a, >1, i.e., beyond the boundary

of the texture domain, if performance was above chance but never reached a FC of 0.625.

Sensitivity was defined as 1/threshold, with corresponding confidence intervals. Across-
subject averages of sensitivities or thresholds are computed as the geometric means, and
statistics are computed on the logarithms of the raw values. All calculations were carried out
with in-house MATLAB (MathWorks, Natick, MA) software, which was also used to
synthesize the stimuli described above.

3. Model

Here we describe a computational model for discrimination thresholds for textures that
contain multiple gray levels and spatial correlations (Fig. 7). As a starting point, we used two
complementary sets of psychophysical studies: studies of textures with multiple gray levels
but without spatial correlation (“IID textures”), and studies with spatial correlation but only
black and white checks. These studies were carried out with different paradigms, in separate
labs, and with separate subjects. The model described here is fully constrained by these
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studies and makes explicit predictions for discrimination thresholds for textures that include
multiple gray levels and spatial correlations.

In overview, the model (Fig. 7) is as follows. The first stage of the model accounts for
sensitivity to IID textures by recasting the mechanisms proposed by the studies of Chubb and
colleagues [14, 16, 17, 33] as stochastic thresholds, rather than gray-level sensitivities. This
stage yields a set of internal representations, one for each of the original Chubb mechanisms.
The second stage of the model then processes the local correlations within these internal
representations. The computations used to do this are the same as those deduced in our
previous studies [13, 18, 27, 28] that focused on black-and-white textures.

We note that, while we describe the model’s computations in terms of the texture
coordinates introduced above, the model operates directly on the visual input. Thus, it makes
predictions that are independent of the coordinates used to parameterize the textures, it treats
all orders of correlation together, and it is not restricted to the textures that lie within the space
we consider.

3.1 First stage: sensitivity to gray-level distribution

Chubb and colleagues [14, 17, 33] showed that discrimination of IID textures could be
accounted for by three “dimensions:” one dimension approximating the mean luminance, a
second dimension approximating variance, and a third dimension signaling the fraction of
very dark checks (“blackshot”). Coordinates along dimension 7 were linear functions of the
histogram distribution:

Cm :ZDm(‘xz)g(xl) > (5)
where the sum ranges over the gray levels in the texture, g(X) is the frequency with which
gray level x occurs, and D, (x) is the extent to which a gray level X contributes to

mechanism m . IID textures that shared the same coordinates (c;,c,,C;) were

indistinguishable, even if their gray-level distributions were disparate. Using an asymmetric
search task, they later [16] showed that these three dimensions derived from the activations of
four underlying mechanisms, which were also linear functions of the histogram distribution:

a, = F,(x)g(x), (6)

These four mechanisms are necessarily linearly dependent, since they are constrained to
yield the three dimensions of eq. (5) above. For textures with nine equally-spaced gray values

{0,1/8,...,7/8,1}, [16] determined consensus values of the linear functions of F (x;)

across three subjects, along with the relative weightings with which each subject used these
mechanisms. These data were kindly provided by C. Chubb and are given in Table S2. The

correspondence to the nomenclature of [16] is as follows: F| and F) correspond to the two
complementary quasilinear mechanisms (their F., and F.,); F, corresponds to the
blackshot-like mechanism (their £ ), and £} corresponds to the mechanism sensitive to

midrange grays (their £ ).
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To apply these data to general gray-level distributions, we interpolated these values via a
cubic spline. Thus, for a texture in which g(x)Ax is the fraction of checks with gray levels

between X and X+ Ax, the “activation” produced in mechanism m (m € {1,2,3,4}) is

given by
1
a, = ij (x)g(x)dx. @)
0
A Model Framework
nonlinearity ithorzgsztlg bir;taarzlisi;wcasge quadratic distance
AFELLE 1 ( )
5 N — 3 % AP — - X _
visual g 2 W 5’
texture N /“‘ﬁ L — Ay[ | — ® g
il — L : ( —»[m ) J —»[m @ ,g
5 5 = =
. Ay” BN ®/‘ £
A
Ay[4] N ®
. J wy

Fig. 7. A model for discrimination of textures with multiple gray levels and spatial correlations, illustrating how it
acts on the visual stimuli used here. The four curves labeled “nonlinearity” show the mechanisms F”” (eq. (8)).
For further details, see text.

In our model, we recast each Silva and Chubb mechanism m as a probabilistic

conversion to an internal representation /, of the original texture. Specifically, we interpret

F (x) as a nonlinear function of the gray level, whose value at each location in the texture

determines the probability that the original check is internally represented in the “high” state
(designated 1), vs. the “low” state (designated 0). The probability that a check of gray-level
X is converted to 1 by mechanism m is given by

F"(x) A B® ) (8)
2 max,, | F|

This remaps the zero-centered F (X) °s to quantities ”*”(x) that range from 0 to 1, as

shown by the nonlinearities in Fig. 7. We postulate that this stochastic conversion from gray-
level to a binary representation is independent at each check and across the mechanisms.

In this re-interpretation, the spatial average <Im> of the internal representation of a

texture with luminance distribution g(x) corresponds to the activation produced by the
mechanism in the original formulation, other than a fixed offset and proportionality constant:
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where we have used eq. (7) and J. g(x)dx =1, since it is a probability distribution. This
0

means that two textures are indistinguishable in the original Chubb model if, for each

mechanism, their internal representations in the present model have identical average values.

3.2 Second stage: sensitivity to spatial structure

The influence of the spatial organization of these internal representations is addressed by
the second stage of the model. Specifically, we posit that texture discrimination is based on
comparing the local statistics of these internal representations, and that the local statistics are
compared according to the model [13] for black-and-white textures. That model posited that
discrimination of a locally-correlated black-and-white texture from a random texture could be
accounted for by 10 local image statistics. These quantities, which correspond to the local

. . — 0 6 66

image statistics introduced above for G=2 (7, ﬂ—, 'B‘, ﬂ\, 'B/, 47T T @y
are here collectively denoted by the column vector Y= Y25 M10) to facilitate a
compact notation. Sensitivity to these image statistics and their combinations was specified

by a 10x10 symmetric matrix 0 , with the threshold for discrimination from a random

texture given by an ellipsoid,
T —
Yo=Y 0,5y, =8
iyl . (10)
0, =0,

finding that thresholds are unchanged after 90 -deg rotations of a texture, and after mirroring

0 is constrained not only by cross-diagonal symmetry ( ), but also by the empirical

a texture in the cardinal axes. This leaves a total of 20 free parameters for 0 . [13] determined

these parameters (for S= 1) in 4 subjects (one of whom, MC, was a subject in the present
studies) and validated them with out-of-sample predictions for black-and-white textures.
Here, we use the average (arithmetic mean) across subjects (Table S2).

To incorporate this process into a model for discrimination of gray-level textures in a way
that ensures consistency with findings for black-and-white textures, we need to consider how
the characteristics of the mechanisms in the first stage influence the local image statistics

5lm]

of its internal representation. We first consider how a mechanism transforms the
probabilities of gray-level configurations into probabilities of binary configurations, and then
the transformation from binary configurations into local image statistics.

The key observation is that, although each of the Silva-Chubb mechanisms depends
nonlinearly on gray level, they act linearly on the probabilities of local configurations. That is,

X,

(with X, in the
X, X,

X,
a 2x2 region of the stimulus texture with gray-level values [ 1

range [0,1]) will be converted by mechanism m to one of the 16 possible binary
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b2

representations ( ! j (bi =0 or 1). The probability that this block will be converted to

3 4

b b
[bl b2 via mechanism 7 is equal to the joint probability that each of the X, is
3 Y
converted to the corresponding internal representation bi. Since we posit that these
conversions are independent,
[m] bl b2
L =F (x,b)F (x,,b,)F (x;,b,)F, (x,,b,), where
3 Y

(11
1= F""(x), b=0

Fm (xab) :{ Fmpmb(x), b=1

The probability of each binary block type in the internal representation is the sum of
contributions from each of gray-level configurations in the original texture:

[m] b, b, X X
P E b E, (b (5, b)F, (b p| |2
3 4 X

x 3 4

XX . .
. This can be written

where the sum is over all G* gray-level configurations X = [
X, X,

more compactly as
where p is a column vector of the probabilities of the G* gray-level configurations indexed

by ¥, p" is a column vector of the 2* =16 binary block probabilities in the internal

representation 1, and L[C';"] isa G*x16 matrix specified by the multiplier in (12). Note

that although L[é"] is a large matrix, it is entirely specified by the Silva-Chubb model and the
set of gray levels, via our probabilistic interpretation.

We next consider how Z)[m] , the block probabilities of the internal representation, are

captured by the binary image statistics )7['"]. Each image statistic is a linear combination of
block probabilities -- for example, ﬂ‘ , is the difference between the fraction of 2x1 blocks

in which the checks match, and the fraction in which they mismatch. Thus, the transformation
from block probabilities to image statistics is linear:

J-;[m] — Y];[m] , (14)

where Y is a 10x16 matrix determined solely by the definition of the image statistics (for
details, see [18]), and is given in Table S4. Combining eqs. (13) and (14) yields the

transformation from p , the block probabilities in the original texture, to )7['"], the image
statistics of the binary representation produced by mechanism #1 :

=YL (15)
According to our model, the threshold to distinguish two textures, characterized by p and

P’ respectively, is based on a comparison of the image statistics of their binary
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representations, " and 3. For distinguishing between a structured black-and-white
texture with statistics ¥ and a random one ( ¥ = 0), we previously found [13]that thresholds

were accounted for by a quadratic function of ¥ (eq. (10)). For comparison of two structured

textures, we previously found [28] that, in the three coordinate planes tested, thresholds

depended primarily on the difference ) — ¥, and not on the reference texture '. That is,
the texture discrimination signal for two black-and-white textures given is given by:

S=(-7) 0(-7). (16)

Here, we postulate that these findings also apply at the level of the internal binary

representations, i.e., that each internal binary representation generates a signal based on a

quadratic function of the difference in image statistics A" = "1 — 5" The overall

texture discrimination signal S is then a sum of contributions from each of the mechanisms:

S=3 w, 5" JAP™, (17)

where the weights w, ~are taken to be the weights from the Silva-Chubb model (Table S2).

The matrix J describes how the image statistics are used within each mechanism. We
determine it by the requirement that eq. (17) is consistent with previous studies of black-and-
white textures, i.e., eq. (16). Note that this requirement means that J will not be the same as
the matrix (O, since J acted on the statistics of a black-and-white texture, while J acts on
the statistics of the internal representation of a texture, after it has been transformed by each
mechanism m . The calculation of J is detailed in the Supplemental Document
(“Specification of the model’s quadratic form™), and the resulting matrix is given in Table S3.

3.3 Model summary

In brief, the proposed model (Fig. 7) specifies a difference signal S that governs the
discrimination of two gray-level textures. The model has two stages. In the first stage, several
independent mechanisms generate distinct internal representations of each texture, by
applying a stochastic threshold that depends nonlinearly on the gray level (egs. (7) to (9)).
This stage of the model ensures that for textures without spatial correlation (“IID textures”),
the model reproduces the three-dimensional domain (luminance, contrast, blackshot) of
discriminable IID textures identified by Chubb and coworkers [14, 16, 17, 33]. Consistency is
guaranteed because the first stage uses the same mechanisms as the Chubb et al. model, so
IID textures that are indistinguishable according to the Chubb et al. model produce
indistinguishable internal representations in the present model.

The second stage of the model confers sensitivity to spatial structure by comparing the
local statistics of these binary representations. The specifics of that comparison (eq. (17)) are
determined by the requirement that for black-and-white textures, the findings of [13] are
recovered.

Other than the arbitrary value of S (eq. (17)) at which discrimination occurs, the model’s
parameters are determined by complementary previous studies: discrimination of textures
with multiple gray levels but no spatial correlation, and textures with only black and white
checks, with local spatial correlations in two dimensions. Note that for all textures, the
dependence of the discrimination signal on texture contrast is quadratic, but the
proportionality contrast depends on the kinds of correlations that are present in the texture, via
the model specification. These texture-dependent proportionality constants determine the
predicted relative sensitivities.

3.4 Making model predictions
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To determine model predictions for the current experiments, we simulate the images
generated by the stimulation generation procedure and determine the texture contrast for
which the discrimination signal S reaches a threshold value. Since the specific experimental
paradigm (check size, stimulus size, target size, viewing time, etc.) used here is the same as
that of [13, 18, 27, 28] the model predicts the experimentally-measured discrimination
threshold to be the value of the texture contrast for which S =1. This computational
procedure was modified for rays in which the predicted threshold was high, since the stimulus
generation procedure is limited in the range of texture contrasts that can be attained. In those
directions, we determine the texture contrast at which S =1/16 rather than S =1. Then,
recognizing the quadratic dependence of discrimination signal on texture contrast, we convert

this texture contrast into a predicted threshold by multiplying it by 1/ \/E =+/16=4.

We also made predictions from alternate models that had the same structure as Fig. 7, but
posited a different set of first-stage mechanisms. One such model had just one first-stage
mechanism, with a threshold at mid-gray: it mapped all darker-than-mean checks to 0, all
lighter-than-mean checks to 1, and randomly assigned mid-gray checks to 0 or 1. Other
models were reduced from the model of Fig. 7 by omitting one or more of the Silva-Chubb

mechanisms from the first stage. Since mechanisms £ and F, are equal and opposite — and

this complementarity was an essential feature of the findings of [16], these reduced models
always included either both of these mechanisms, or neither. In all cases, these alternate
models were implemented by repeating the above calculations with the modified set of
mechanisms, including a re-calculation of the matrix J in eq. (17) so that the resulting
model’s predictions remain consistent with our findings for black-and-white textures [13].

To provide an omnibus measure of model predictions, we computed the fraction of the
variance of the psychophysical thresholds that was unexplained by the model predictions,
calculated by comparing the sum of the squares of the difference in measured and predicted
thresholds, to the sum of the squares of the predicted thresholds, without scaling. For this
purpose, psychophysical thresholds were averaged across individuals via the geometric mean,
as in previous studies[13]. For some conditions, the model predicted an infinite threshold (i.c.,
the criterion of S =1/16 in eq. (17) was never reached at any texture contrast). For those
conditions, we used the largest finite threshold that the model predicted in any other
condition. To obtain a comparable measure of intersubject reliability, we computed the
fraction of the variance of each subject’s thresholds that was not explained by each other
subject, across conditions in common, and report the median value of these variance fractions
across all subject pairs. These computations were carried out separately for Experiments 1
(first- and second-order statistics only), 2, and 3.

4. Results

4.1 Experiment 1

We used a four-alternative segmentation task (Fig. 6) to determine sensitivity to image
statistics in textures that contained three gray levels and spatial correlations. Each set of
measurements focused on the correlations within a particular spatial template— e.g., a pair of
horizontally-adjacent checks — and within this family of correlations, on a specific type
(“genus”) of correlations. As detailed in Methods, the genus is defined by constraining the
distribution of a specific linear combination of luminance values of the checks in the template,
where luminance is denoted by 0 for black, 1 for gray, 2 for white, and the linear combination
is computed mod 3. So, for example, for the family of correlations between a pair of

horizontally-adjacent checks, the genus specified by 5'(1 ) constrains the sum A+ B of
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703 adjacent luminance values, while the genus specified by 5'(1 ») constrains the sum A+2B.

704 Since these sums are computed mod 3, they can have the values 0, 1, or 2, and the

A. psychophysical thresholds —s—mc —s—ws —=— 74 —=— SR —=—NM

C. bil

Alternate Models

G. mechanisms Fz and Fa

C_,SHJ c_f:l 1 CSU 2) C_f( J 6(‘2}

Fig. 8. Psychophysical thresholds (A) and model predictions (B-G) for Experiment 1, first- and second-order

statistics. Each triangular domain corresponds to a first-order statistic o ) (Fig.1), a second-order statistic

o a s involving horizontally-adjacent checks (Fig. 2), or a second-order statistic o [1 ] involving checks that

S
share a corner. Upper row: individual subjects’ data. The origin corresponds to a random texture; green triangle
corresponds to the boundary of the domain, whose vertices are at (1,0,0). (0,1,0), and (0,0,1) . Rings indicate
textures of equal correlation strength, with a correlation strength of 1 at the vertices of each domain. Thresholds
outside the domain correspond to conditions in which performance was above chance, but did not reach the criterion

fraction correct within the stimulus domain. Note that the domains for O [1 J are plotted on a different scale. For

s
thresholds <1, uncertainties (2SEM) for individual subject thresholds are typically < 10% of the measured thresholds,
and are not shown. Model predictions are shown for the full model (B) and for alternate models consisting of a single
channel that binarizes at mid-gray(C) or subsets of the Silva-Chubb mechanisms (D-G). For model predictions,
isodiscrimination contours are disconnected if predicted thresholds at intermediate directions are >4.
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probabilities of these three values describes a triangular domain (see Fig. 2). Similarly, the
first-order domain 5'(1) (Fig. 1) is parameterized by the distribution of single-check gray

levels, and the third- and fourth-order domains (for example, 5'(1 Ij and 5'[1 2] , Fig. 3) are

1 21

parameterized by the distribution of linear combinations of gray levels in 3 and 4 neighboring
checks, respectively. In each domain, the centroid is the random texture; the measured
thresholds indicate, in multiple directions within each domain, the distance from randomness
that is necessary for the statistical structure of the texture to be visually apparent.

Fig. 8A shows the measured thresholds for the first- and second-order domains in five
subjects. Thresholds are lowest for the first-order statistics, and, within the second-order
statistics, lower for the statistics that describe correlations among horizontally-adjacent checks

(5(1 5)) than for the statistics that describe correlations among checks that share a corner,

5[1 ] This pattern holds in all subjects. Additionally, the isodiscrimination contours are
approximately elliptical and symmetric about the origin, other than for directions in which
thresholds are high and therefore not precisely measurable. Thresholds for correlations among
vertically-adjacent checks 5'(1] were not systematically determined, as pilot experiments (as
well as our previous studies with black-and-white textures [13]) showed that they were very
similar to the corresponding thresholds for horizontally-adjacent checks.

As detailed in Methods, we constructed a model (Fig. 7) for discrimination of spatially-
correlated gray-level textures, based on two previously-obtained complementary datasets: (i)
studies of discrimination of gray-level textures with no spatial correlation [14, 16, 17, 33], and
(i1) studies of discrimination of spatially-correlated black-and-white textures [13, 18, 27, 28].
In brief, the model had two stages: a first stage that analyzed luminance distributions via
multiple parallel mechanisms, and produced an internal binary representation along each
channel, and a second stage that was sensitive to spatial correlations present within each of
these internal representations. The model had no free parameters, as it was fully constrained
by the requirement that it accounted for these two previous complementary datasets.

Fig. 8B shows the thresholds predicted by this model. The model approximates the
absolute thresholds found experimentally, and fully accounts for the ordering of thresholds
among the correlation types. It also accounts for the elliptical shapes of the isodiscrimination
contours where thresholds can be reliably determined. However, the model is clearly
imperfect. It predicts a greater sensitivity for first-order statistics than we observed, and the

axes of the ellipses are inaccurately predicted for 5(1), 6(1 > and 6(1 ] . Note, however,

1

that all model parameters were determined from independent experiments involving textures
with either no spatial correlations [16] or experiments involving black-and-white textures [13,
18], and a nearly non-overlapping set of subjects.

We next examined the extent to which the multichannel nature of the model is critical to
achieve a good correspondence to the experimental observations. We considered a simplified,
one-channel model in which the first-stage mechanism was a threshold, sending darker-than-
mean checks to 0 and lighter-than-mean checks to 1, and randomly assigned mid-gray checks.
We also considered multichannel models in which one or more of the Silva-Chubb

mechanisms were deleted. For the latter models, we either retained both F| and F,, or

deleted both — as their complementary, linearly-dependent nature was an important feature of
the Silva-Chubb analysis [16]. In all cases, the model’s second stage was adjusted to ensure
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that it produced thresholds for black-and-white textures that corresponded to previous
psychophysical measurements [13, 18].
The last five rows of Fig. 8 show that overall, the predictions of these alternate models

differ substantially from the measured thresholds. While the alternate models make similar
predictions for 5(1 2 and 5'(1 (third and fifth columns), their predictions for the first-
g

order statistic and the other second-order statistics differ widely from the psychophysical
measurements. The model with binarization at mid-gray (Fig. 8C) and the model with

luminance-like mechanism pair F| and F, (Fig. 8D) predict very high thresholds in some

directions in the domains of 5'(1), 5(1 1> and 6[1 j, in contrast to the psychophysical
1

measurements and the predictions of the full model (Fig. 7). The other reduced models (Fig.

8E-G) do not predict unreasonably high thresholds for 5'(1 ) and 5'(1 ), but nevertheless

1

fail dramatically for 5'(1), and, in some cases (Fig. 8F,8G), for 5'(1 N and 6[1
1

] as well.

Note that the rather strange predicted isodiscrimination contours for 0_:(1) result not only from

omitting mechanisms, but also from constraining the model’s second stage to account for
thresholds to spatially-correlated black-and-white textures.

Table 2. Quantification of Model Predictions

model Experiment 1 Experiment 2 Experiment 3
full (51, 52 5 Fy 0.268 0.138 0.274
binarize at mid-gray 1.739 1.565 0.391
B oand B2 0.713 0.573 2.840
BB g B 2.481 3.441 0.712
B F ang Fs 1.769 0.231 0.856
F and B4 1.403 0.240 0.158
intersubject variability 0.585 0.130 0.212

Model predictions are quantified by the fraction of the variance of the threshold measurements accounted for by the
model. For Experiment 1, only first- and second-order statistics are considered. The entry for intersubject variability
is the median of the fraction of variance of one subject’s data that is accounted for by a second subject. For further
details, see Methods.

Table 2 (second column) quantifies the goodness of fit of the full model and the alternate
models considered in Fig. 8, in terms of the fraction of variance unexplained by each model’s
prediction of the average psychophysical thresholds. The full model leaves 27% of the
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variance unexplained; the best alternate model (£| and £} only) leaves 71% of the variance

unexplained. For the other models, more than 100% of the variance is unexplained (i.e., in
terms of explained variance, the model is worse than a model that simply predicts that all
thresholds are zero). The last row of Table 2 compares these statistics with a measure of
intersubject variability, the median of the fraction of the variance unexplained in one subject’s
data, based on a second subject (see Methods). For the full model, the fraction of variance
unexplained is comparable to the intersubject variability; for all the alternate models, the
fraction of variance unexplained is greater than the intersubject variability, often substantially

SO.
Third Order
A \

Oy O O3

FourthOrder —s—wc —= ws —=— 24 — & R — = nm

C.

D. \ \ \

it O Oy
11 22 21

Fig. 9. Psychophysical thresholds and model predictions for Experiment 1 in the triangular domains of selected
third- and fourth-order statistics. First and third rows show experimental measurements; second and fourth rows

show model predictions. Points are disconnected if intervening directions correspond to chance performance
(psychophysical data) or thresholds > 4 (model). For examples of the domains, see Fig. 3: the third-order domain

5'[] 1] is shown in Fig. 3A; the fourth-order domain 5'(] 5

is shown in Fig. 3B. Other plotting conventions as
2 1]

1
in Fig. 8.
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Thresholds for third- and fourth-order statistics are shown in the first and third rows of
Fig. 9. Thresholds were generally much higher than for first- and second-order correlations,
and there were many directions in the third- and fourth-order domains in which performance
was at chance, even for maximally-correlated textures. The model predicts these higher
thresholds, and largely accounts for the directions in which thresholds could be measured. For

2 2

the third-order domains and the fourth-order domains 6[1 1] and 5[1 ,y» predicted
2 1]

thresholds are closest to the borders of the stimulus domain in the direction of the lower-left
vertex, corresponding to configurations in which luminance values sum to zero (mod 3).
These are the directions in which subjects’ performance was better than chance. However, for

11

the fourth-order domain 5{
11

J , subjects’ performance was better than chance at each vertex,

and this does not appear to be accounted for by the model.

4.2 Experiment 2

Experiment 2 examines how different kinds of image statistics combine, focusing on second-
order image statistics. Studies were organized into four groups: group I made use of stimuli

that combined 5'(1 ;) and 6(1 2

horizontal correlation 5'(1 5) with a vertical correlation 6(1]. Each of these genera of

the other groups made use of stimuli that combined a

o
correlations includes three species (corresponding to the three vertices of its domain), so
pairwise combinations of genera encompassed multiple pairwise combinations of specific
image statistics (Table S1).

Experimental results are shown in alternate rows in Fig. 10. All combinations of image
statistics supported image segmentation, and the pattern of threshold behavior is consistent
across subjects, as in Experiment 1 (Fig. 8A). Moreover, thresholds are again nearly
symmetric for positive and negative correlation strengths, and isodiscrimination contours
were very nearly circular or elliptical. These behaviors were also captured by the model of
Fig. 7, including the orientation of the isodiscrimination contours in most cases.

Quantitatively (Table 2), the model of Fig. 7 also performs well; the fraction of variance
unexplained (14%) is comparable to median intersubject variability (13%). None of the

alternate models perform comparably: two (the models with mechanisms £, F,, and F,,

and the model with mechanisms /) and F)) have reasonable performance (23-24% of

variance unexplained); the others perform very poorly.

4.3 Experiment 3
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Experiment 3 determines sensitivity to a salient subset of second-order statistics across a
range of gray levels. Specifically, we examined two kinds of correlations between adjacent
checks: correlations that produced gradients (Fig. 5A), and correlations that produced streaks
(Fig. 5B). Note that for a given number of gray levels, the luminance distribution is the same
for the two kinds of stimuli, but the spatial organization differs.
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Fig. 10. Psychophysical thresholds and model predictions for Experiment 2, which combines pairs of second-order
statistics. Each pair of rows corresponds to an experimental group, delineated in Table S1. The upper row of each
group shows experimental measurements; the lower row shows model predictions. The domains in each group
combine a second-order statistic drawn from two genera, shown at the beginning of the rows, as delineated in Table
S1. Individual domains are labeled according to the correlation species varied along the ordinate and abscissa, each of
which is defined by a vertex within the genus’ triangular domain (e.g., Fig. 2). Barycentric coordinates of the vertices

are indicated by do for (1,0, 0) , dl for (0, 1, 0) , and d2 for (0, 0,1) . The first and fifth domains of Group I are

shown in Fig. 4AB; the first domain and third domains of Group IV are shown in Fig. 4CD. Other plotting
conventions as in Figs. 8 and 9.

Thresholds were measured in six subjects, using the same procedures as Experiments 1
and 2. One subject, MC (an author) was also a participant in Experiments 1 and 2.

For the gradients (Fig. 11A, left), thresholds were an inverted-U function of the number of
gray levels, with texture-contrast thresholds of approximately ¢ =0.5 for 3 and 11 gray
levels, and a maximal threshold of 0.7-1.0 for 5 gray levels. For the streaks (Fig. 11A, right),
thresholds were 0.2-0.3 for all subjects, and independent of gray level. Thresholds were
independent of the direction of the gradient or the orientation of the streak.

The thresholds predicted by the model are shown in Fig. 11B. The model predicts the
inverted-U shape of the sensitivity function and its peak position, as well as the absolute
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thresholds at the extremes of the curve, but overestimates the threshold for 5 gray levels. For
streaks, the model predicts the independence of gray levels and also predicts the absolute

thresholds.

Fig. 11C shows the predictions of the alternate models in Fig. 8. With regard to the
gradients, several of these models predict unreasonably high thresholds for 3 or 4 gray levels,
far exceeding the psychophysical findings. The one model that does not fail in this fashion

(F, and F, only) predicts a higher threshold for 7 gray levels rather than 5; all subjects
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Fig. 11. Psychophysical thresholds and model predictions for Experiment 3, gradients (left) and streaks (right).
A: Individual subjects’ data. Uncertainties (2SEM) for individual subject thresholds are <0.05 and are not
shown. B: Predictions of the model. C: Predictions (color) of alternate models whose first stage consists of a
single mechanism with a threshold at mid-gray, or a subset of the Silva-Chubb mechanisms. The predictions of
the full model are shown in black. Off-scale points correspond to predicted thresholds > 4.
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showed the opposite behavior. With regard to streaks, most of the alternate models correctly
predicted the finding that thresholds were approximately independent of the number of gray

levels. However, the threshold predicted by the F; and F, only-model was lower than

measured, and the thresholds predicted by the Fj, F,, and F, model showed a near-

doubling of threshold as the number of gray levels increased from 3 to 11, also inconsistent
with the data.

In a quantitative analysis (Table 2), the accuracy of model predictions (27% of variance
unexplained) is comparable to intersubject variability (21% of variance unexplained). Most of

the alternate models do not perform as well. The model with mechanisms F; and F)

provides a better fit in this experiment (16% of the variance unexplained), but, as noted
above, this model performs very poorly in Experiment 1 (none of the variance explained).

5. Discussion

This study examined sensitivity to visual textures, with the broad goal of understanding how
neural computations analyze a high-dimensional sensory space. Visual textures constitute
such a space, as their parametric description — local image statistics — includes not only the
luminance distribution, but also spatial correlations among pairs of checks, triplets, etc. While
human visual sensitivity to image statistics is selective [24], the number of perceptually
relevant texture parameters is quite large. The visual system can detect texture differences
based on several aspects of the luminance distribution in the absence of spatial correlations,
and multiple kinds of spatial correlations, even for textures that only have black and white
elements. Moreover, typical textures have spatial correlations and are not restricted to two
luminance levels; the number of parameters required to describe spatial correlations grows
rapidly as the number of luminance levels increase [20]. Here, to understand how such
textures are processed, we examine perceptual thresholds for discrimination of several classes
of textures that have multiple gray levels and also spatial correlations.

Our main findings in Experiments 1 and 2 are that two observations previously made for
black-and-white spatially-correlated textures [13] apply in this more general context:
thresholds for negative and positive correlations are nearly equal, and signals from different
local image statistics combine quadratically. The net result is that isodiscrimination
thresholds, parameterized by local image statistics, are approximately elliptical.

Our main finding in Experiment 3 is that gray-level distribution and spatial correlations
interact: for one kind of spatial correlation (gradients), threshold for discrimination from
randomness has a sharp maximum when 5 gray levels are present; for a second kind of spatial
correlation (streaks), the threshold is approximately independent of gray levels.

While this interaction is perhaps unsurprising, it provides empirical evidence that gray-
level distributions and spatial correlations are not merely processed independently. In an
attempt to capture how these dimensions interact, we constructed a computational model to
account for our findings, based on previous studies of gray-level textures without spatial
correlations, and studies in our lab of spatially-correlated black-and-white textures. As the
model is fully constrained by those previous studies, it has no free parameters. The model
reproduces the qualitative features of our findings --the elliptical shape of the
isodiscrimination contours seen in Experiments 1 and 2, and the interaction between the
number of gray levels and spatial correlations seen in Experiment 3 — and provides a
reasonable quantitative prediction of the thresholds as well.

We note, however, that all of the stimuli are constructed with discrete, monochrome
checks, so it is an open issue as to whether the approach extends to textures with continuous
gradations and/or chromatic content.
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5.1 The model

The proposed model (Fig. 7) combines elements that process luminance distributions and
elements that process spatial pattern in a novel manner. We emphasize that it is a
computational model; its components are not intended to have direct physiologic correlates.

The first stage of the model consists of a set of parallel mechanisms that process luminance
distributions. Each mechanism transforms the visual input into a binary representation,
assigning each check to 0 or 1 with a probability determined by the gray-level of the stimulus.
The characteristics of these mechanisms — i.e., the way that the probability depends on gray

levels (F,,, eq. (6))and their relative strengths (W, , eq. (17))-- are taken from the studies of

m
Silva and Chubb [16], in which they used a search task to measure discrimination of spatially-
uncorrelated gray-level textures. By using the Silva and Chubb mechanisms, our model is
guaranteed to reproduce the key findings of Chubb and colleagues [14, 16, 17, 33]: that
spatially-uncorrelated gray-scale textures form a three-dimensional perceptual space, and
textures that are indistinguishable by these mechanisms are perceptually indistinguishable.

The second stage confers the sensitivity to spatial correlations. Each of the internal
representations produced by the first stage is analyzed by mechanisms sensitive to patterns in
2% 2 clusters of checks. The second stage is thus sensitive not only to pairwise correlations,
but also to third- and fourth-order correlations among nearest neighbors, as is needed to
account for early observations concerning isodipole textures [34]. The way that signals from
these local correlations combine (eq. (17)) is fully constrained by the requirement that the
model accounts for discrimination thresholds for black-and-white textures, previously
measured in our lab [13, 18, 27, 28], as detailed in the Supplemental Document,
“Specification of the model’s quadratic form.”

Our model can be viewed as a generalization of a “back-pocket” [15] framework: its first
stage consists of several independent analyzers and their outputs are combined quadratically.
But in contrast to the standard back-pocket model, the outputs of the analyzers are
multivariate quantities that contain spatial information, rather than scalars. Correspondingly,
the quadratic combination rule is a quadratic form, rather than a simple square law. This
generalization allows for interactions between gray-level distributions and spatial pattern.

The ability of the model to predict our findings, both qualitatively and quantitatively,
depends not only on its overall structure, but also on the specifics of the model’s first stage:
the four independently-identified Silva-Chubb mechanisms [16]. When these mechanisms are
replaced by a simple threshold, or, when one or more of them are removed, the elliptical
isodiscrimination contours of Experiments 1 and 2 are lost, and some thresholds are predicted
to be unreasonably large (Fig. 8C-G). These alternate models also are not able to account for
the interaction of the gray-level distribution and spatial correlations seen in Experiment 3
(Fig. 11). Alternate models also fall short in terms of quantitative prediction of the measured
thresholds for first- and second-order statistics and their combinations (Table 2).

5.2 Simplifications and approximations

In keeping with the goal of focusing on the structure of the computations underlying texture
processing and avoiding an explosion of parameters, the model makes substantial
simplifications regarding the neural circuitry underlying spatial processing. Center-surround
organization and orientation-tuned spatial filtering are not explicitly modeled. Instead, the net
effect of checks surrounding the central element are lumped together into the stochastic
threshold that converts the central check into an internal binary representation. As we don’t
model “receptive fields” explicitly, we don’t take into account eccentricity-dependence of
receptive field centers and surrounds (and consequent eccentricity-dependent changes in the
typical number of checks within a receptive field). Finally, the nearest-neighbor correlations
that define the textures necessarily induce longer-range correlations, but these are neglected —
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the model’s sensitivity to spatial structure is determined only by configurations in a 2X 2
block of checks, independent of eccentricity.

These simplifications enable us to constrain the model based on previous studies — though
this too entails some assumptions. The first-stage mechanisms are taken from previous studies
with spatially-uncorrelated textures [16]. This makes the assumption that these mechanisms
are unchanged when spatial correlations are present, and when the specific gray level
distributions differ substantially. Further, the second-stage mechanisms we use to model the
processing of spatial structure were determined from studies in which structured textures were
discriminated from random ones [13]. Here they are applied to internal representations in
which the comparison is between two non-random textures. The “translation invariance”

needed for this generalization (i.e., that discrimination between textures with coordinates ¥

and Z depends only on y—Z) is only approximate [28]. Moreover, these internal

representations, though binary, are outside the stimulus set used in [13]: because of the action
of the stochastic threshold, they are no longer maximum-entropy.

Despite these approximations and simplifications, the agreement of the model with the
experimental data is good -- but there are also specific systematic discrepancies that are larger
than intersubject variability. Overall, the model underestimates the thresholds for first- and
some second-order statistics, and overestimates the threshold for third- and fourth-order
statistics. For some first- and second-order statistics, the orientation of the isodiscrimination
ellipse is also not accurately predicted.

While any of the above approximations and simplifications may contribute to the model’s
inaccuracies, the overall under-prediction of low- order thresholds and over-prediction of
high-order thresholds is expected to be very sensitive to the precise shapes of the operating
curves of the first-stage mechanisms. Specifically, if the thresholds were slightly less
stochastic — i.e., the curves transitioned more rapidly from 0 to 1 — then the balance would tilt
towards the high-order correlations, as these rely on preservation of the image structure in
multiple neighboring checks. The precise shapes of the first-stage mechanisms will also
influence the orientation of the ellipses, as well the replacement of true surround subtraction
by a stochastic threshold, as well as the neglect of correlations at larger spatial scales.

While our focus is on a simple conceptual model for visual computations, the model’s
structure is fully compatible with more elaborate, physiologically-realistic models. Our main
building blocks — linear summation and pointwise nonlinearities — are typical building blocks
of such models. As mentioned above, the stochastic threshold is an approximation of the
influence of the receptive field surround. Moreover, the nonlinearities required to extract
third- and fourth-order spatial correlations are known to exist in primate area V2 [35], and
emerge naturally in models of recurrent neural networks[36].

5.3 How visual modalities combine

An important way in which the brain copes with the complexity of the visual world is to
utilize separate regions or networks specialized for processing of visual modalities, such as
orientation, color, shape, motion, and depth. While initial studies emphasized specialization
and modularity[2, 37, 38], it is now well-recognized that these modules are not independent,
as subsequent studies revealed both physiological and psychophysical evidence for
intermixing [8, 9, 39-41].

The model structure we propose presents a common theme for the way in which cross-
modal interactions are structured. In our model, local luminance is processed by a parallel set
of mechanisms, each of which provides an internal representation that is then analyzed by a
second stage, which is sensitive to spatial correlation. Similarly, in Papathomas’ [39] study of
chromatic interactions with motion, local chromatic signals provide tags, which is then used
by a standard spatiotemporal analyzer to extract unambiguous motion. Non-Fourier motion
can be viewed in the same way: it can be detected by a cascade in which local flicker or local
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unsigned contrast becomes tokens that serve as a starting point for standard motion
analysis[42]. Finally, in studies of structure-from-motion [43], the spatial arrangement of
locally-extracted motion signals constitute an internal representation that is then analyzed for
shape.

Our model is a further elaboration on this theme. In the first stage of our model, multiple
internal representations are abstracted from the luminance image. At the model’s second
stage, each of these internal representations undergoes a spatial analysis. Each of these
transformations is both local and nonlinear, but the nonlinearities address different aspects of
the input: luminance distribution and spatial structure. The net result is a computation that
could not be achieved by independent processing within these modalities.

5.4 Relevance to visual processing of natural scenes

The computation captured by this model is central to efficient visual processing of natural
scenes. As has been proposed by the efficient coding hypothesis [44], the visual system is
tuned to take advantage of the distinctive statistical characteristics of natural visual inputs.

These characteristics include not only their well-known 1/ f : spatial power spectra [45-47],

but also, their luminance and local image statistics [23-25, 48]. Specifically, some kinds of
local image statistics are quite variable across natural scenes, and are therefore highly
informative, while others are relatively more stereotyped and/or predictable, and therefore less
informative. Importantly (and perhaps surprisingly), these previous studies [23-25] have
shown that the informativeness of different kinds of local image statistics in natural scenes is
closely correlated with visual sensitivity to these statistics when they are isolated in our
synthetic textures. Our model shows that the computations that implement efficient coding
can be accomplished in a compact fashion, that is, by combining the outputs of a small
number of local mechanisms (the first stage of the model) with a single quadratic nonlinearity
(the second stage of the model).

Note also that our findings are inconsistent with the notion that visual sensitivity to an
image statistic merely reflects the extent to which the statistic reduces entropy. All texture
domains have a fully random (maximally entropic) texture at the origin, and, for small texture
contrasts, the reduction in entropy depends only on the distance from the origin (Appendix B
of [18]), independent of the domain or the direction of the displacement. The widely varying
sensitivities we observe, and the elliptical rather than circular isodiscrimination contours,
indicate that sensitivity varies widely across image statistics, even though they each reduce
entropy by the same amount. This selectivity is inconsistent with coding entropy reduction
per se, but, as mentioned above, corresponds instead to the efficient coding of natural scenes.

Finally, we note that the efficient coding framework is also relevant to understanding
how the chromatic content of natural scenes is processed [49-52]; however, the present
analysis (and that of many others [21, 53-56]) is limited to their achromatic aspects.

6. Back matter
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