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Discrimination of textures with spatial 1 
correlations and multiple gray levels: 2 
supplemental document 3 

 4 

1. Specification and construction of textures 5 

The present approach to parameterizing and constructing maximum-entropy textures with 6 
multiple gray levels generalizes the method of [1] for black-and-white textures used in 7 
previous studies[2-6]. This extension proceeds in two stages. First, in the black-and-white 8 
case, each configuration of checks (e.g., two horizontally-adjacent checks) corresponds to a 9 
single type of correlation, but when there are multiple gray levels, each configuration 10 
corresponds to a family of correlations. Second, in the black-and-white case, each correlation 11 
is specified by a scalar, but when there are G  gray levels (here, 3G =  to 11G = ), each 12 
kind of correlation is specified by a set of 1G −  independent variables – so that for 2G > , 13 
this specification is a vector, rather than a scalar. These extensions, presented here in detail, 14 
are also outlined in Appendix A of [1].  15 
1.1 Families of correlations 16 
The starting point is a specification of the probabilities of each way of coloring a 2 2×  block 17 

of checks. We denote each such probability by 1 2

3 4

A A
p

A A
 
 
 

, where each kA  denotes the 18 

gray level of a check, which we designate as an integer from 0 to 1G −  (0 indicates black, 19 
1G −  indicates white). Since there are G  choices for coloring each check, there are 4G  20 

ways of coloring a 2 2×  block.  21 
The basic hurdle is that these 4G  block probabilities are not independent, and the number 22 

of constraints between them increases rapidly with G . An obvious constraint is that, since 23 
they are an exhaustive list of probabilities, they must sum to 1. But other constraints arise 24 
because these block probabilities must be consistent with a homogeneous texture. For 25 
example, the two ways of computing the probability of horizontal (1 2× ) blocks must lead to 26 
consistent results: one could focus on the upper checks 1A  and 2A  and sum (“marginalize”) 27 
over the lower checks 3A  and 4A , or one could focus on the lower checks 3A  and 4A  and 28 
sum over the upper two checks 1A  and 2A . Dependencies among the block probabilities 29 
arise because these two computations must produce the same results. Further constraints arise 30 
from consideration of the probabilities of other configurations of checks: singletons and 2 1×  31 
blocks. We note that we are concerned here with “algebraic” dependencies, i.e., dependencies 32 
that determine one block probability from another and therefore reduce the number of 33 
independent parameters. (We are not concerned with dependencies that merely limit the range 34 
of one or more parameters, but do not change the number of degrees of freedom).  35 

To obtain a new set of coordinates that untangles these dependencies, we use the 36 

procedure described in Appendix A of [1]. The new coordinates, denoted 1 2

3 4

s s
s s

ϕ
 
 
 

, are 37 
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the discrete Fourier transforms of the block probabilities, where the transform is computed 38 
with respect to the gray level value in each check.  39 
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Since this is a discrete transform, the Fourier transform variables ks  are also integers 41 

from 0 to 1G − . The original block probabilities 1 2

3 4

A A
p

A A
 
 
 

 can be obtained from the 42 

new coordinates 1 2

3 4

s s
s s

ϕ
 
 
 

 by standard inversion of the discrete Fourier transform: 43 
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In an analogous fashion, Fourier transform coordinates can be defined for any set of 45 
checks, including subsets of the 2 2×  neighborhood. For example, the Fourier transform 46 
coordinates for the checks in the upper 1 2×  block are defined by  47 
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where 1 2A A
p  
 
 

 denotes the probability that the upper two checks of a 2 2×  block 49 

contain 1A  and 2A , regardless of the contents of the two lower checks.  50 
The Fourier transform coordinates allow for removal of the dependencies described above 51 

because ignoring a check corresponds to setting the corresponding Fourier coordinate to zero. 52 
This allows us to express the consistency conditions simply in terms of the Fourier transform 53 
coordinates for the 2 2×  block. 54 

Consider, for example, the consistency condition for 1 2×  blocks. Computed from the 55 

upper two checks, this quantity, is determined by summing 1 2

3 4

A A
p

A A
 
 
 

 over 3A  and 4A : 56 
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 58 
Substituting this expression into eq. (S3) shows that  59 
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Similarly, the Fourier transform coordinates of the 1 2×  blocks computed from the lower 61 
two checks are defined by 62 
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and, via a similar calculation to eq. (S5), are given by  64 
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Since the Fourier transform coordinates determine the original coordinates (and vice-versa), 66 
the consistency condition  67 

 1 2

1 2

A A
p p

A A
  

=   
   

 (S8) 68 

is equivalent to 69 

 1 2

1 2

0 0
0 0
s s

s s
ϕ ϕ
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The other consistency conditions can be written in an analogous form. The condition that 71 
computing the 2 1×  block probabilities from either the left or right columns of the 2 2×  72 
block gives the same result is expressed by  73 

 1 1

3 3

0 0
0 0

s s
s s

ϕ ϕ
   

=   
   

. (S10) 74 

The condition that the single-check probabilities are equal in all four positions is equivalent to 75 

 
0 0 0 0 0 0

0 0 0 0 0 0
s s

s s
ϕ ϕ ϕ ϕ
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. (S11) 76 

Also, the condition that the block probabilities sum to 1 can be written 77 

 
0 0

1
0 0

ϕ
 

= 
 

. (S12) 78 

In sum, the consistency conditions (eqs. (S9), (S10), and (S11)) can expressed in terms of 79 

the Fourier transform coordinates as follows: any argument of 1 2

3 4

s s
s s

ϕ
 
 
 

 that is zero can 80 

be replaced by an empty space, and the value of 1 2

3 4

s s
s s

ϕ
 
 
 

 must be unchanged by 81 

translating the remaining values within the 2 2×  neighborhood.  82 
Thus, if a set of block probabilities is consistent with a texture, its Fourier transform 83 

coordinates can be specified by the following quantities, which we designate the “reduced 84 
Fourier coordinates” (Table 1 of the main text): ( )1sϕ , equal to the common value of the 85 

four expressions in eq. (S11) for the 1G −  nonzero values of s ; ( )1 2s sϕ , equal to the 86 

common value of the two expressions in eq. (S9) for each of the 2( 1)G −  pairs of nonzero 87 

values of 1s  and 2s ; 1

3

s
s

ϕ
 
 
 

, equal to the common value of the two expressions in eq.(S10) 88 
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for each of the 2( 1)G −  pairs of nonzero values of 1s  and 3s , as well as other Fourier 89 
transform quantities not involved in constraints (because the nonzero coordinates cannot be 90 

translated within the 2 2×  neighborhood). These coordinates are 1

4

s
s

ϕ
 
 
 

, 91 

2

3

s
s

ϕ
 
 
 

, 1 2

3

s s
s

ϕ
 
 
 

, 1 2

4

s s
s

ϕ
 
 
 

, 1

3 4

s
s s

ϕ
 
 
 

, 2

3 4

s
s s

ϕ
 
 
 

, and 1 2

3 4

s s
s s

ϕ
 
 
 

, 92 

defining two-check, three-check, and four-check correlations. In all of these cases, the 93 
arguments ks  must be nonzero. Conversely, specifying these quantities uniquely determines 94 
the block probabilities via Fourier inversion (eq. (S2)). 95 

In the black-and-white case ( 2G = ), the only possible nonzero value for each ks  is 1, so 96 
specifying the location of the nonzero arguments of ϕ  is the same as specifying its 97 
arguments completely. Thus, the only first-order coordinate is ( )1ϕ ; the second-order 98 

coordinates are ( )1 1ϕ , 
1
1

ϕ
 
 
 

, 
1

1
ϕ
 
 
 

, and 
1

1
ϕ
 
 
 

; the third-order coordinates 99 

are 
1 1
1

ϕ
 
 
 

, 
1 1

1
ϕ
 
 
 

, 
1
1 1

ϕ
 
 
 

, and 
1

1 1
ϕ
 
 
 

; and the one fourth-order coordinate 100 

is 
1 1
1 1

ϕ
 
 
 

. As shown in Table 1 of the main text, the reduced Fourier coordinates 101 

correspond to the binary texture coordinates {γ , β− , |β , \β , /β , θ , θ , θ , θ , α } 102 
used by [1].  103 

For 3G ≥ , each choice for the locations of nonzero arguments of ϕ  is associated with a 104 
family of correlations, rather than just a single correlation as in the black-and-white case, 105 
because the arguments ks  of the reduced Fourier coordinates range independently from 1 to 106 

1G − . Thus, we can count the independent parameters needed to specify 2 2×  block 107 
probabilities: there are 1 1n G= −  choices for the first-order coordinates ( )sϕ ; 108 

2
2 4( 1)n G= −  choices for the second-order coordinates ( )1 2s sϕ , 1

3

s
s

ϕ
 
 
 

, 109 

1

4

s
s

ϕ
 
 
 

, and 2

3

s
s

ϕ
 
 
 

; 3
3 4( 1)n G= −  choices for the third-order coordinates, 110 

1 2

3

s s
s

ϕ
 
 
 

, 1 2

4

s s
s

ϕ
 
 
 

, 1

3 4

s
s s

ϕ
 
 
 

,and 2

3 4

s
s s

ϕ
 
 
 

; and 4
4 ( 1)n G= −  choices for 111 

the fourth-order coordinates 1 2

3 4

s s
s s

ϕ
 
 
 

. The total parameter count is  112 
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1 2 3 4
2 3 4

2

( )
( 1) 4( 1) 4( 1) ( 1)

( 1)( 1)

totn G n n n n
G G G G

G G G G

= + + +

= − + − + − + −

= − + −

.  (S13) 113 

This parameter count is 10 for 2G =  and 66 for 3G = .  114 
The Fourier transform coordinates have two convenient properties. First, the random 115 

texture (a texture where the gray level in each location is chosen independently, and equally 116 
likely to be any of the G  possible values) is at the origin of the parameter space. That is, 117 
each of the ( )totn G  Fourier coordinates is zero. This will be demonstrated below. Second, 118 
the Fourier coordinates are “calibrated:” that is, near the origin of the space, entropy, which 119 
corresponds to discriminability by an ideal observer, depends only on the Euclidean distance 120 
to the origin. This property can be demonstrated via the approach of Appendix B of [1].  121 
1.2 Specifying individual correlations: barycentric coordinates 122 
While the Fourier transform coordinates account for the dependencies between block 123 
probabilities, they cannot be chosen arbitrarily, since their inverse transforms – the original 124 
block probabilities -- must be all real and in the range [0,1] . That is, while we have solved 125 
the problem of dependencies between different orders of correlations, we still need to address 126 
dependencies within correlations of each family. This can be handled via a second 127 
transformation, to barycentric coordinates. To motivate this strategy, we examine the 128 
transformation between block probabilities and Fourier coordinates, eqs. (S1) and (S2), first 129 
for 2G =  and then for 3G = . The critical component is the exponential, 130 

( )1 1 2 2 3 3 4 4
2 i A s A s A s A s
Ge
π ± + + + 

  . For 2G = , this exponential term is equal to 1+  or 1− , 131 

depending on whether 
4

1
k k

k
s A

=
∑  is even or odd. Thus, eq. (S1) shows that the Fourier 132 

coordinates are guaranteed to be real, and eq. (S2) shows that any choice of real values for the 133 
Fourier coordinates will yield real values for the block probabilities. Moreover, since each of 134 
the block probabilities can be no greater than 1, eq. (S1) shows that the Fourier coordinates 135 

must lie in the range [ 1, 1]− + . Recognizing that 
0 0

1
0 0

ϕ
 

= 
 

 (eq. (S12)), eq. (S2) also 136 

shows that choosing any single Fourier coordinate ϕ  within this range, and setting the others 137 
to zero, is guaranteed to yield block probabilities in the range [0,1] , as they will all be equal 138 

to 
1 (1 )

16
ϕ± , depending on whether 

4

1
k k

k
s A

=
∑  is even or odd.  139 

However, consideration of 3G =  shows that this simplicity is not generic, as the 140 

exponential term 
( )1 1 2 2 3 3 4 4

2 i A s A s A s A s
Ge
π ± + + + 

   need not be real. But as in the black-and-white 141 

case, it only depends on the remainder of 
4

1
k k

k
s A

=
∑  ( modG ).  142 

This dependence motivates grouping the terms of eq. (S1) according to the value of this 143 
remainder. We therefore define 144 
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( )
1 2

1 2 3 43 4

1 1 1 1
1 2
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G G G G
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  = = = =
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 
= + + + − 

 
∑ ∑ ∑ ∑ , (S14) 145 

where ( )modG zδ  is 1 if z  is a multiple of G , and zero otherwise. That is, 
1 2

3 4
,

s s
h

s s

σ 
 
 

 is the 146 

total probability of all blocks for which 1 1 2 2 3 3 4 4A s A s A s A s+ + +  has a remainder 147 
(mod )G  of h . They are therefore all real and non-negative. They also determine the 148 
Fourier coordinates, because the defining equation for the Fourier coordinates (eq. (S1)) can 149 
be re-expressed by collecting common values of the exponential:  150 
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3 4

21
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,03 4

iG h
G
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e
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π

ϕ σ
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 
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A consequence of eq.(S15) is that for the fully random texture, the coordinates ϕ  are all 152 

zero – since for any 1 2

3 4

s s
s s
 
 
 

, all of the nonzero values of 
1 2

3 4
,

s s
h

s s

σ 
 
 

 are equal, and the 153 

exponentials associated with these terms are equally-spaced unit vectors on the circle. 154 

However, the σ ’s are a redundant parameterization, since if 
4

1
k k

k
s A h

=

=∑  ( modG ), then 155 

4

1
k k

k
qs A qh

=

=∑  ( modG ) as well. That is,  156 

 
1 2 1 2

3 4 3 4
, ,

s s qs qs
h qh

s s qs qs

σ σ   
   
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= . (S16) 157 

Our final step is to remove this redundancy. This step is simplest when G  is prime. (We 158 
do not discuss the modifications required when G  is composite as they are only needed for 159 
specific choices of ks  that are not relevant to the stimuli used in this study – these are cases 160 
in which all the ks  have a common factor that also divides G ). We remove this redundancy 161 
by focusing on the position m  of the first nonzero value of the arguments of ϕ  (that is, 162 

0ms ≠  but 1 1,..., ms s −  are all 0), and showing that all of these ϕ ’s are determined by the 163 
subset of 

1 2

3 4

s s
s s

σ 
 
 

’s for which 1ms = . This follows from the properties of modular 164 

arithmetic. When G  is prime, every integer {1,..., 1}r G∈ − , has a unique inverse 165 
{1,..., 1}q G∈ −  for which 1qr =  ( modG ), which we denote by 1q r−= . We now 166 

choose 1
mq s−=  in eq. (S15), and apply eq. (S16). It follows that  167 
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As h  ranges over all values from 0 to 1G −  (mod )G , so does qh ,but in a different 169 
order. Substituting v qh=  (so 1

mh q v s v−= = ),  170 
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where m  is the index of the first nonzero ks . Since the first nonzero value of kqs  is mqs , 172 

and 1
mq s−= , this expresses 1 2

3 4

s s
s s

ϕ
 
 
 

 as a Fourier transform of σ ’s for which the first 173 

nonzero term is 1. We call these σ ’s “monic.” 174 
Applying this analysis to each of the subsets of a 2 2×  block yields a transformation 175 

from the reduced Fourier coordinates into the monic σ ’s. As eqs. (S17) or (S18) show, σ ’s 176 
and ϕ ’s are discrete Fourier transform pairs, so the monic σ ’s can be calculated directly 177 
from the ϕ ’s and vice-versa. Explicitly, the Fourier coordinates and the monic σ ’s are 178 
related by 179 
  180 

1
1

1
1 2

1 1
1 3 1 4

1
1

1
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1 1
1 3 1 4
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1
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−
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−
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 =  
 

−
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  = 
 
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 

∑

∑

, (S19) 181 

with analogous relationships for reduced Fourier coordinates that operate on subsets of the 182 
2 2×  block. 183 

Thus, specifying the monic σ ’s and the reduced Fourier coordinates ϕ  are 184 
interchangeable, and we have seen above that the latter parameterizes the block probabilities 185 
that are consistent with a homogeneous texture. 186 

The final step is to group together the G  values ,0 ,1 , 1( , , , )σ σ σ −S S S G  as a single 187 
vectorial quantity 

1 2

3 4

σ 
 
 



s s
s s

, and to give this vector a geometric interpretation. This step is 188 

independent of the size of the block or the parameters ks  that specify S . Because ( )σ S h  is 189 
the probability that the linear combination of gray levels specified by S  has a remainder of 190 
h  (mod )G , these quantities must sum to 1 and each must be 0≥ . This means that σS  191 
corresponds to the intersection of a hyperplane (the constraint that the quantities sum to 1) 192 
and the sector of G -dimensional space in all coordinates are non-negative. For example, for 193 

3=G , the three values ,0 ,1 ,2( , , )σ σ σ σ=


S S S S  are the coordinates of the points within an 194 
equilateral triangle whose vertices are at (1,0,0) , (0,1,0) , and (0,0,1) . For the generic 195 
G , σS  corresponds to a regular simplex in dimension 1−G , with its vertices at unit 196 
distances along the G  axes – i.e., barycentric coordinates [7] (page 216). The origin of the 197 
texture space, i.e., the texture for which all block probabilities are equal, corresponds to 198 

(1/ ,1/ , ,1/ )σ =


S G G G , is at the centroid of each of these simplexes.  199 
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In sum (Table 1 of the main text), we began with the probabilities p  of each of the 4G  200 
ways of coloring a 2 2×  block. Because these probabilities were drawn from a texture, there 201 
were consistency constraints among them that needed to be taken into account. These 202 
consistency constraints took on a simple form following Fourier transformation of the block 203 
probabilities. This transformation yielded the Fourier coordinates ϕ , which are complex 204 
numbers with 2( 1)( 1)G G G G− + −  free parameters. We then re-transformed the Fourier 205 
coordinates back into the domain of probabilities, leading to a grouping of these parameters 206 
into 2( 1)+ −G G G  vector quantities σ , each of which are barycentric coordinates for a 207 

1−G -dimensional simplex. Table 1 of the main text also summarizes how these coordinates 208 
correspond to the system used in previous studies [1-6], in which 2=G  and each of the 10 209 
barycentric coordinate pairs reduce to scalars. This reduction corresponds to representing a 2-210 
simplex, the line segment from (1,0)  to (0,1) , by a scalar that runs from -1 to 1. 211 

1.3 Textures used in this study 212 
The coordinates described above provide a formal description of the textures used in this 213 

study.  214 
In Experiments 1 and 2, we used textures with three equally-spaced luminance levels 215 

(Figs. 1-4 of the main text, and Figs. S1 and S2). For 3G = , the complete set of barycentric 216 
coordinates consist of 2( 1) 33G G G+ − =  vectors: one first-order vector ( )1σ ; eight 217 

second-order vectors ( )1 sσ , 1
s

σ 
 
 



, 1
s

σ 
 
 



, and 1
s

σ 
 
 



 for {1,2}s∈ ; 16 third-order 218 

vectors 1 s
s

σ 
 ′ 



 and its analogs rotated by 90, 180, or 270 deg in space, for , {1,2}s s′∈ , 219 

and eight fourth-order vectors 1 s
s s

σ 
 ′ ′′ 



 for , , {1,2}s s s′ ′′∈ . 220 

In Experiment 1 we surveyed sensitivity to textures in which one of these vectors (i.e., one 221 
barycentric coordinate) was allowed to vary, and the rest were held at the origin. We then 222 
measured sensitivity for first-order vector ( )1σ  (24 directions); the second-order vectors 1

s

σ 
 
 



 223 

and 1
s

σ 
 
 



 (12 directions each); the third-order vectors 1 1
1

σ 
 
 



, 1 1
2

σ 
 
 



, and 1 2
2

σ 
 
 



 (3 224 

directions each), and the fourth-order vectors 1 1
1 1

σ 
 
 



. 1 1
1 2

σ 
 
 



, 1 1
2 2

σ 
 
 



, and 1 2
2 1

σ 
 
 



 (3 225 

directions each). Each of the 33 vectors in the complete set for 3G =  is either in this 226 
analyzed subset, or corresponds to an image statistic which, when rotated by 90, 180, or 270 227 
deg or reflected in a cardinal axis, is in this set. 228 

In Experiment 2, we studied textures specified by combinations of two second-order 229 
coordinates, for example, ( )1 2 ,0σ  and 1

,2
1

σ 
 
 

 (Fig. 4 of the main text). 22 such combinations 230 

were studied (Table S1), fully sampling the possible combinations of cardinal second-order 231 
correlations up to rotational and mirror symmetry.  232 

The textures used in Experiment 3 had 3, 4, 5, 7, and 11 gray levels. Here, second-order 233 
correlations were chosen to create gradients (Fig. 5A of the main text) or streaks (Fig. 5B of 234 
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the main text). In terms of the above parameterization, the gradients are specified by 235 
( )1 1 ,1Gσ −  (increasing luminance to left), ( )1 1 , 1G Gσ − −  (increasing luminance to right), 236 

1
,1

1G

σ 
 − 

 (increasing luminance up), 1
, 1

1
G

G

σ 
− − 

 (increasing luminance down). Streaks are 237 

specified by ( )1 1 ,0Gσ −  (horizontal streaks), and 1
,0

1G

σ 
 − 

 (vertical streaks).  238 

1.4 Texture synthesis 239 
Most textures can be synthesized by the Markov method detailed in [1], which enables 240 
creation of textures specified by a single nonzero barycentric coordinate, or a pair of 241 
barycentric coordinates that correspond to correlations in the same spatial direction. This 242 
includes all of the stimuli for Experiments 1 and 3, and Group I (Table S1) of Experiment 2.  243 

For the remaining textures, in which second-order correlations were present in two 244 
directions, a new construction-- “falling sticks” – is needed in some cases. This construction 245 
is described in [8] and summarized here. As a first step, a library of one-dimensional strips is 246 
created in each of the directions. For example, in the case of a Group III texture, horizontal 247 
strips correlated according to ( )1 1σ , and vertical strips correlated according to 1

2

σ 
 
 



. Then, 248 

these strips are dropped at random onto the plane, with each newly-dropped strip covering up 249 
any strips that overlaps, until the entire lattice is covered. In a 1 2×  region in which the final 250 
strip is horizontal, the correlation corresponding to ( )1 1σ  is preserved. Alternatively, if one 251 
or two vertical strips landed on this region after the last horizontal strip, the colorings of the 252 
1 2×  checks are independent. Thus, the 1 2× correlations in the library of horizontal strips 253 
are diluted. The dilution factor is 1/ 3  -- the probability that the last strip that landed on the 254 
1 2×  region is horizontal. Similar reasoning applies to the vertical correlations. Thus, 255 
provided that the desired correlations in the final texture are 1/ 3≤ , they can be achieved by 256 
judicious choice of the correlations in the original library of strips. First- and third-order 257 
correlations in the final texture are zero because they were absent in the original strips, and 258 
fourth-order correlations are present but small. 259 

Note that the texture constructions described here are distinguished from those of [9] in 260 
that they take two-dimensional correlations into account, and are distinguished from those of 261 
[10]and [11] in that they have maximum-entropy guarantees. 262 

263 
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 264 
2. Experimental Details 265 

This section provides details of how texture domains were sampled in Experiments 1 and 266 
2.   267 

In Experiment 1, stimuli were defined by equally-spaced points lying along 12 rays in 268 
triangular domains corresponding to a genus of texture statistics (see Table 1 of the main 269 
text). Each ray began at the origin of the domain (the random texture) and extended either 270 
towards a vertex, or to points that were equally spaced along the edges of the domain (Fig. 271 
S1A). These sample points were used for the third- and fourth-order statistics. For second-272 
order statistics, pilot studies showed that the textures at the vertices of the domain yielded 273 
ceiling performance, so the sample points along these rays were brought closer to the origin 274 
by a factor of 2/3 (Fig. S1B). For the same reason, distances along all rays were further 275 
shortened by a factor of 1/2 for the first-order statistics (Fig. S1C), and in this case, an 276 
additional set of 12 rays were interleaved to better delineate the threshold behavior. 277 

 278 
 279 

In Experiment 2, stimuli were organized into four groups, as detailed in Table S1. Group I 280 
examined interactions between different statistics with the same family ( (1 1)σ  and (1 2)σ , 281 
as in Fig. 4A,B of the main text); the other groups probed interactions between statistics from 282 
different families, describing correlations in orthogonal directions, (1 )sσ  and 1

s

σ 
 ′ 



: with 283 

( , ) (1,1)s s′ =  in group II, ( , ) (1, 2)s s′ =  in group III, and ( , ) (2, 2)s s′ =  in group IV 284 
(the latter shown in Fig. 4C,D of the main text). All 22 domains (i.e., all 22 pairs of statistics)  285 
were sampled along rays in 12 equally-spaced directions, with three equally-spaced points 286 
along each ray. The position of the furthest points along the rays were determined by pilot 287 
studies, to ensure that they would be effective for measuring thresholds. These considerations 288 
resulted in the sampling strategies are shown in Fig. S2. 289 

290 

Fig. S1. Stimulus parameters used in Experiment 1. Each dot’s position indicates the coordinates of a stimulus within 
a texture domain. A. For third- and fourth-order statistics, stimulus parameters were positioned along 12 rays 
(indicated by the black lines), each beginning at the origin of the domain and ending at the domain’s boundary. B. 
For second-order statistics, distances from the origin along the rays directed towards the vertices (thicker lines) are 
reduced by a factor of 2/3 compared to Panel A. C. For first-order statistics, distances along all rays are further 
reduced by a factor of 1/2 compared to Panel B, and 12 additional rays are interleaved. The two sets of 12 rays, 
shown in separate colors, were tested in separate sessions. 
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 291 
 292 

Table S1. Experiment 2 Design Details 293 
group second-order statistics sampling 

I 

 

genus ( )1 1σ  ( )1 2σ   

species 
(vertex) 

 

(1,0,0) (1,0,0) A 

(1,0,0) (0,1,0) A 

(0,1,0) (1,0,0) A 

(0,1,0) (0,1,0) A 

(0,0,1) (1,0,0) A 

(0,0,1) (0,1,0) A 

II 

genus ( )1 1σ  1
1

σ 
 
 



  

species 
(vertex) 

(1,0,0) (1,0,0) B 

(0,1,0) (0,1,0) B 

(0,0,1) (0,0,1) B 

(1,0,0) (0,1,0) C 

(0,1,0) (0,0,1) C 

(0,0,1) (1,0,0) C 

III 

genus ( )1 1σ  1
2

σ 
 
 



  

species 
(vertex) 

(1,0,0) (1,0,0) B 

(1,0,0) (0,1,0) C 

(0,1,0) (1,0,0) B 

(0,1,0) (0,1,0) C 

(0,0,1) (1,0,0) B 

(0,0,1) (0,1,0) C 

IV 

genus ( )1 2σ  1
2

σ 
 
 



  

species 
(vertex) 

(1,0,0) (1,0,0) B 

(1,0,0) (0,1,0) B 

(0,1,0) (1,0,0) B 

(0,1,0) (0,1,0) B 
Experiment 2 details. Each experimental group examines combinations of second-order statistics drawn from two 294 
genera, each corresponding to a triangular domain (as in Fig. 2 of the main text). Within each group, individual 295 
experiments differ according to the axes along which the statistics are varied. This axis -- the species -- is specified 296 
by a vertex of the triangular domain. The rightmost column indicates the design for sampling the domain generated 297 
by this combination of statistics, as illustrated in Fig. S2. 298 
 299 

   300 
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 301 
302 

Fig. S2. Stimulus parameters used in Experiment 2. As in Fig. S1, each dot’s position indicates the coordinates of a 
stimulus within a texture domain. The three sampling strategies (A, B, and C) correspond to the three designs 
indicated in Table S1. Each of these sampling strategies consist of 12 equally-spaced rays, with equidistant points 
along the rays chosen based on pilot studies. In A, the furthest points lie at a distance 1 / 3  from the origin; in B, 
they lie at a distance 1 / 2 , and in C, they are 1 / 3  on-axis and vary from 2 / 9  to 1 / 3  off-axis.  
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 303 
 304 

3. Specification of the model’s quadratic form  305 

Here we detail the calculations that specify the proposed model’s quadratic form J , by 306 
requiring that the model’s predictions for discrimination of black-and-white textures are 307 
consistent with previous experimental studies [3]. Ensuring that this is the case means that for 308 
any pair of black-and-white textures characterized by image statistics y  and y′ , applying 309 
eq. (17) of the main text to their internal representations (i.e., the proposed model) must yield 310 
the same result as applying eq. (16) of the main text to y  and y′  (the empirical findings of 311 
[3]).  312 

To work out the consequences of this requirement, we construct the binary block 313 
probabilities corresponding to y  and y′ , then we apply eq. (15) of the main text to 314 
determine the image statistics of their internal representations, so that eq. (17) of the main text 315 
can be applied. Just as the image statistics are linear functions of the block probabilities via 316 
Y  (eq. 14 of the main text), the block probabilities are linear functions of the image statistics, 317 
other than an offset corresponding to the block probabilities of the random texture. That is, 318 

 ( ) ( ) ( )rand randp p p Py p Py P y y′ ′ ′− = + − + = −
       

 (S20) 319 
where p  and p′  are the block probabilities corresponding to the image statistics y  and  320 
y′ , and randp  assigns a probability of 1/16  to each of the 16  possible binary 2 2×  321 

neighborhoods. The linear transformation P  is given in Table 1 of [1] and here in Table S5; 322 
it is determined by the definition of the image statistics (eq. (S2)) and is not a model 323 
parameter. With eq. (15) of the main text, this yields a linear relationship between the 324 
difference between the binary image statistics y  and  y′ , and the difference between their 325 
internal representations [ ] [ ]m my y′−

 

: 326 
 [ ] [ ] [ ] [ ]

2 2( ) ( )m m m my y YL p p YL P y y′ ′ ′− = − = −
     

. (S21) 327 
Thus, the discrimination signal specified by eq. (17) of the main text is  328 

 [ ] [ ]
2 2( ) ( )T T m T T m

m
m

S w y y P L Y JYL P y y′ ′= − −∑    

. (S22) 329 

Since eqs.(S22) and main text eq. (16) are quadratic forms in the difference vector y y′−
 

 330 
that are identical for all choices of this vector, it follows that the quadratic forms themselves 331 
are equal: 332 

 [ ] [ ]
2 2

T m T T m
m

m
w P L Y JYL P Q=∑ . (S23) 333 

Finally, eq. (S23) is a linear relationship between the elements of J  and the elements of 334 
Q , with all the other quantities already specified, either from the Silva-Chubb parameters 335 
( mw  and [ ]

2
mL ), or the definition of the image statistics (Y  and P ). Solving the set of linear 336 

equations yields J , which is given in Table S3.  337 
338 
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 339 
 340 
4. Supplemental Tables for Computational Model 341 

Table S2. Silva-Chubb Mechanisms 342 
Activation Functions Fm(xi) 

 Mechanism (m) 
Gray level (xi) 1 2 3 4 

0/8 0.6110 -0.6110 0.8730 -0.5679 
1/8 0.4387 -0.4387  -0.1276  0.0936 
2/8 0.2447 -0.2447  -0.3204  0.4330 
3/8 0.0287 -0.0287  -0.2902  0.4847 
4/8 -0.1478 0.1478  -0.1728  0.2851 
5/8 -0.2915 0.2915  -0.0454  -0.0624 
6/8 -0.3424 0.3424  0.0326  -0.2674 
7/8 -0.2964 0.2964  0.0365  -0.2510 
8/8 -0.2482 0.2482  0.0181  -0.1631 

Weights (wm) 

 Mechanism (m) 
Subject 1 2 3 4 

S1  3.6279 3.3101  2.1911  2.8306 
S2  3.5763 3.3565  2.5370  2.3111 
S3  3.8363 3.1354  1.8562  2.2364 

Average 3.6801 3.2673 2.1948 2.4594 

Silva and Chubb [12] modeled the discrimination of IID textures in terms of four mechanisms, 343 
whose characteristics are defined by the four activation functions mF  (see eq. (6) of the main 344 
text). Columns list the values of ( )m iF x  at nine equally-spaced gray level values ix  from 345 
black (0) to white (1); weights of these mechanisms as determined in the three subjects in that 346 
study; and the average across subjects, which were the values mw used in this study. Numerical 347 
values kindly provided by C. Chubb. 348 

349 
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Table S3. Model Matrices 350 
Q: measured sensitivity to black-and-white textures 

 
1( )y γ  2 ( )y β−  3 |( )y β  4 \( )y β  5 /( )y β  6 ( )y θ  7 ( )y θ  8 ( )y θ  9 ( )y θ  10 ( )y α  

1( )y γ  32.340 -1.478 -1.478 0.888 0.888 1.864 1.864 1.864 1.864 -0.142 

2 ( )y β−  -1.478 13.370 1.480 0.169 0.169 -0.453 -0.453 -0.453 -0.453 2.156 

3 |( )y β  -1.478 1.480 13.370 0.169 0.169 -0.453 -0.453 -0.453 -0.453 2.156 

4 \( )y β  0.888 0.169 0.169 6.754 3.045 -0.690 -1.059 -0.690 -1.059 -0.352 

5 /( )y β  0.888 0.169 0.169 3.045 6.754 -1.059 -0.690 -1.059 -0.690 -0.352 

6 ( )y θ  1.864 -0.453 -0.453 -0.690 -1.059 1.579 0.949 0.482 0.949 -0.390 

7 ( )y θ  1.864 -0.453 -0.453 -1.059 -0.690 0.949 1.579 0.949 0.482 -0.390 

8( )y θ  1.864 -0.453 -0.453 -0.690 -1.059 0.482 0.949 1.579 0.949 -0.390 

9 ( )y θ  1.864 -0.453 -0.453 -1.059 -0.690 0.949 0.482 0.949 1.579 -0.390 

10 ( )y α  -0.142 2.156 2.156 -0.352 -0.352 -0.390 -0.390 -0.390 -0.390 2.255 

J: inferred sensitivity to internal binary representations 
 

1( )y γ  2 ( )y β−  3 |( )y β  4 \( )y β  5 /( )y β  6 ( )y θ  7 ( )y θ  8 ( )y θ  9 ( )y θ  10 ( )y α  

1( )y γ  56.067 -65.606 -65.606 -44.687 -44.687 12.033 12.033 12.033 12.033 -33.253 

2 ( )y β−  -65.606 42.940 20.940 1.525 1.525 -31.215 -31.215 -31.215 -31.215 28.823 

3 |( )y β  -65.606 20.940 42.940 1.525 1.525 -31.215 -31.215 -31.215 -31.215 28.823 

4 \( )y β  -44.687 1.525 1.525 8.098 3.358 2.824 6.655 2.824 6.655 3.343 

5 /( )y β  -44.687 1.525 1.525 3.358 8.098 6.655 2.824 6.655 2.824 3.343 

6 ( )y θ  12.033 -31.215 -31.215 2.824 6.655 18.287 13.416 9.799 13.416 -50.568 

7 ( )y θ  12.033 -31.215 -31.215 6.655 2.824 13.416 18.287 13.416 9.799 -50.568 

8( )y θ  12.033 -31.215 -31.215 2.824 6.655 9.799 13.416 18.287 13.416 -50.568 

9 ( )y θ  12.033 -31.215 -31.215 6.655 2.824 13.416 9.799 13.416 18.287 -50.568 

10 ( )y α  -33.253 28.823 28.823 3.343 3.343 -50.568 -50.568 -50.568 -50.568 72.427 

The matrices used to model sensitivity to local correlations. The matrix Q  defines the quadratic form that 351 
accounts for discrimination of black-and-white textures with nearest-neighbor correlations (eqs. (10) and (16) of 352 
the main text). Q  is determined in [3], which provided the eigenvalues and eigenvectors (Fig. 5A and 353 
Supplementary Table 1 of that reference) in four subjects; here, we use the average of the corresponding matrices. 354 
The matrix J  defines the quadratic form in the present model that acts on internal binary representations 355 
produced by each of the Silva-Chubb mechanisms (eq. (17) of the main text). J  is determined from the Silva-356 
Chubb mechanisms (Table S2) and from Q , as the solution to eq. (S23). 357 

358 
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359 
Table S4. Conversion of Block Probabilities to Local Image Statistics 360 

 0 0
0 0

 
  
 

 1 0
0 0

 
  
 

 0 1
0 0

 
  
 

 1 1
0 0

 
  
 

 0 0
1 0

 
  
 

 1 0
1 0

 
  
 

 0 1
1 0

 
  
 

 1 1
1 0

 
  
 

 0 0
0 1

 
  
 

 1 0
0 1

 
  
 

 0 1
0 1

 
  
 

 1 1
0 1

 
  
 

 0 0
1 1

 
  
 

 1 0
1 1

 
  
 

 0 1
1 1

 
  
 

 1 1
1 1

 
  
 

 

1( )y γ  -1 -1/2 -1/2 0 -1/2 0 0 1/2 -1/2 0 0 1/2 0 1/2 1/2 1 

2 ( )y β−  1 0 0 1 0 -1 -1 0 0 -1 -1 0 1 0 0 1 

3 |( )y β  1 0 0 -1 0 1 -1 0 0 -1 1 0 -1 0 0 1 

4 \( )y β  1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

5 /( )y β  1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

6 ( )y θ  -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 

7 ( )y θ  -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 

8 ( )y θ  -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

9 ( )y θ  -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 

10 ( )y α  1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

The matrix Y  (eq (14) of the main text) that converts block probabilities to local image statistics.  It is 361 
determined by the definitions of the image statistics. Elements of Y  determines the weighting factor by 362 
which the probability of the 2 2×  block at the top of each column contributes to the image statistic at the 363 
beginning of each row. 364 

365 
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366 
Table S5. Conversion of Local Image Statistics to Block Probabilities 367 

 1( )y γ  2 ( )y β−  3 |( )y β  4 \( )y β  5 /( )y β  6 ( )y θ  7 ( )y θ  8 ( )y θ  9 ( )y θ  10 ( )y α  
0 0
0 0
 
 
 

 -4/16 2/16 2/16 1/16 1/16 -1/16 -1/16 -1/16 -1/16 1/16 

1 0
0 0

 
  
 

 -2/16 0/16 0/16 -1/16 1/16 -1/16 1/16 1/16 1/16 -1/16 

0 1
0 0

 
  
 

 -2/16 0/16 0/16 1/16 -1/16 1/16 -1/16 1/16 1/16 -1/16 

1 1
0 0

 
  
 

 0/16 2/16 -2/16 -1/16 -1/16 1/16 1/16 -1/16 -1/16 1/16 

0 0
1 0

 
  
 

 -2/16 0/16 0/16 1/16 -1/16 1/16 1/16 1/16 -1/16 -1/16 

1 0
1 0

 
  
 

 0/16 -2/16 2/16 -1/16 -1/16 1/16 -1/16 -1/16 1/16 1/16 

0 1
1 0

 
  
 

 0/16 -2/16 -2/16 1/16 1/16 -1/16 1/16 -1/16 1/16 1/16 

1 1
1 0

 
  
 

 2/16 0/16 0/16 -1/16 1/16 -1/16 -1/16 1/16 -1/16 -1/16 

0 0
0 1

 
  
 

 -2/16 0/16 0/16 -1/16 1/16 1/16 1/16 -1/16 1/16 -1/16 

1 0
0 1

 
  
 

 0/16 -2/16 -2/16 1/16 1/16 1/16 -1/16 1/16 -1/16 1/16 

0 1
0 1

 
  
 

 0/16 -2/16 2/16 -1/16 -1/16 -1/16 1/16 1/16 -1/16 1/16 

1 1
0 1

 
  
 

 2/16 0/16 0/16 1/16 -1/16 -1/16 -1/16 -1/16 1/16 -1/16 

0 0
1 1

 
  
 

 0/16 2/16 -2/16 -1/16 -1/16 -1/16 -1/16 1/16 1/16 1/16 

1 0
1 1

 
  
 

 2/16 0/16 0/16 1/16 -1/16 -1/16 1/16 -1/16 -1/16 -1/16 

0 1
1 1

 
  
 

 2/16 0/16 0/16 -1/16 1/16 1/16 -1/16 -1/16 -1/16 -1/16 

1 1
1 1

 
  
 

 4/16 2/16 2/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 

The matrix P  (eq. (S20)) that converts local image statistics to block probabilities.  The matrix is 368 
determined by the definitions of the image statistics. Elements of P  determine the weighting factor by 369 
which the image statistic at the top of each column contributes to the probability of the 2 2×  block at the 370 
beginning of each row. Note that YP I= , where Y  is given by Table S4. 371 

372 
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