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A perceptual space is a mental workspace of points in a sensory domain that supports similarity and dif-
ference judgments and enables further processing such as classification and naming. Perceptual spaces
are present across sensory modalities; examples include colors, faces, auditory textures, and odors.
Color is perhaps the best-studied perceptual space, but it is atypical in two respects. First, the dimensions
of color space are directly linked to the three cone absorption spectra, but the dimensions of generic per-
ceptual spaces are not as readily traceable to single-neuron properties. Second, generic perceptual spaces
have more than three dimensions. This is important because representing each distinguishable point in a
high-dimensional space by a separate neuron or population is unwieldy; combinatorial strategies may be
needed to overcome this hurdle.
To study the representation of a complex perceptual space, we focused on a well-characterized 10-

dimensional domain of visual textures. Within this domain, we determine perceptual distances in a
threshold task (segmentation) and a suprathreshold task (border salience comparison). In N = 4 human
observers, we find both quantitative and qualitative differences between these sets of measurements.
Quantitatively, observers’ segmentation thresholds were inconsistent with their uncertainty determined
from border salience comparisons. Qualitatively, segmentation thresholds suggested that distances are
determined by a coordinate representation with Euclidean geometry. Border salience comparisons, in
contrast, indicated a global curvature of the space, and that distances are determined by activity patterns
across broadly tuned elements. Thus, our results indicate two representations of this perceptual space,
and suggest that they use differing combinatorial strategies.
Significance Statement: To move from sensory signals to decisions and actions, the brain carries out a
sequence of transformations. An important stage in this process is the construction of a ‘‘perceptual
space” – an internal workspace of sensory information that captures similarities and differences, and
enables further processing, such as classification and naming. Perceptual spaces for color, faces, visual
and haptic textures and shapes, sounds, and odors (among others) are known to exist. How such spaces
are represented is at present unknown. Here, using visual textures as a model, we investigate this.
Psychophysical measurements suggest roles for two combinatorial strategies: one based on projections
onto coordinate-like axes, and one based on patterns of activity across broadly tuned elements scattered
throughout the space.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Perceptual spaces are internal workspaces within a sensory
modality. By providing a representation that captures similarities
and differences, perceptual spaces form a stage of sensory process-
ing that not only supports simple discrimination judgments but
also enables higher levels of processing, such as classification and
naming. Our goal here is to understand the nature of this represen-
tation, using the perceptual space of image statistics (Victor et al.,
2015) as a model. Along with (Edelman, 1998), our use of the term
‘‘representation” refers not only to the points of the perceptual
space (i.e., to individual stimuli), but also, to similarity judgments
(i.e., to how distances between stimuli are computed).

Among perceptual spaces, the space of human trichromatic
color vision is the oldest and best known example (Maxwell,
1860). However, many other perceptual spaces have been identi-
fied: not only in vision (for faces (Catz, Kampf, Nachson, &
Babkoff, 2009; Freiwald, Tsao, & Livingstone, 2009; Tanaka,
Meixner, & Kantner, 2011; Valentine, 1991; Wallraven, 2014) and
other objects (Wallraven, 2014)) but also in other sensory modal-
ities (Bushdid, Magnasco, Vosshall, & Keller, 2014; Gaissert,
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Wallraven, & Bulthoff, 2010; Geffen, Gervain, Werker, & Magnasco,
2011; Koulakov, Kolterman, Enikolopov, & Rinberg, 2011;
McDermott, Schemitsch, & Simoncelli, 2013; McDermott &
Simoncelli, 2011; Yoshioka, Bensmaia, Craig, & Hsiao, 2007; Zaidi
et al., 2013).

While color space is perhaps the most widely studied, many of
its characteristics are not generic. For primate color vision, the
properties of the three cone classes determine the dimensions of
the space (Baylor, Nunn, & Schnapf, 1987), provide it with a coor-
dinate system, and enable construction of stimuli that modulate
each coordinate independently (Derrington, Krauskopf, & Lennie,
1984). For other perceptual spaces, the dimensionality is much lar-
ger, and these perceptual dimensions do not map in a straightfor-
ward way to the physics of the stimulus (Bushdid et al., 2014;
Freiwald et al., 2009; Koulakov et al., 2011; Victor, Thengone,
Rizvi, & Conte, 2015; Cho, Yang, & Hallett, 2000; Portilla &
Simoncelli, 2000). Thus, it is not even guaranteed that generic per-
ceptual spaces have a coordinate system, or that it is possible to
find a set of independent perceptual dimensions. Nevertheless,
these more complex perceptual spaces also support threshold
and suprathreshold judgments.

Because typical perceptual spaces are multi-dimensional, repre-
senting them via ‘‘brute-force” strategies – in which each discrim-
inable stimulus is represented by a separate neuron (or neural
population) – is biologically implausible, because of a dimensional
explosion of the resources required. If there are D independent
dimensions and N discriminable values on each of the correspond-
ing axes, there would be ND distinct points in the space. In the case
of color (D ¼ 3 and N > 100), this leads to an estimate of over 106

distinct stimuli (colors) that need to be represented. For olfactory
stimuli, it is estimated that D is much larger than 10 (Koulakov
et al., 2011), and the total number of discriminable stimuli has
been estimated at > 1012 (Bushdid et al., 2014). The space of visual
textures, the present focus, is also high-dimensional; to analyze
how it is represented, we study regions within a well-
characterized 10-dimensional subset (Victor & Conte, 2012;
Victor et al., 2015).

The dimensional explosion in resources required for a brute-
force representation can be mitigated by combinatorial strategies.
One class of such strategies makes use of coordinates for the space
(e.g., the amount of each color primary). By projecting the entire
space onto each axis, a high-dimensional space can be efficiently
represented in terms of its one-dimensional projections. A second
class of strategies does not rely on a coordinate system in the usual
sense, but instead postulates that neurons have a diverse set of
broadly-tuned sensitivities. Interestingly, theoretical arguments
suggest that this strategy becomes efficient for spaces of dimen-
sionality D P 3 (Zhang & Sejnowski, 1999).

While both kinds of strategies are combinatorial, they make
contrasting predictions about distances. Consider an experiment
that measures perceptual distance between test points that are
displaced in opposite directions from a reference point near the
center of the space. In this experiment, we measure the percep-
tual distance as the amount of the displacement increases – that
is, as the test points are pulled further and further apart. In a
coordinate-based representation, the perceptual distance can only
increase – since the distance between the projections of the two
test points onto any axis must increase, as the test points move
away from the reference. But in a representation based on pat-
terns of activity across broadly-tuned neurons, other outcomes
are possible. For example, suppose that most of the neurons are
tuned to regions near the center of the space, and very few of
them cover its periphery – as would be expected from an efficient
deployment of resources (Hermundstad et al., 2014). Then, as the
test points move into the periphery, fewer and fewer neurons
contribute to their representations, and they therefore become
less distinguishable.

These considerations motivate our approach to probing the rep-
resentation of visual textures. In one experiment, we measure dis-
crimination thresholds; in another, we measure suprathreshold
perceptual distances. Our results suggest that both kinds of combi-
natorial strategies are used to compute distances – a coordinate-
based representation that accounts for discrimination thresholds,
and a distributed representation that accounts for the global per-
ceptual geometry of the space.

2. Materials and methods

The experiments described here consist of two kinds of psy-
chophysical measurements: threshold judgments, using a texture
segmentation paradigm, and suprathreshold judgments, using a
border salience paradigm. Both paradigms made use of the same
domain of visual textures; we describe this domain first and then
describe the specifics of the two paradigms.

2.1. The stimulus space

The stimulus domain is a continuum of visual textures. The
parameters that describe the textures – i.e., the coordinates of
the space – are a set of image statistics, each of which measures
a specific local correlation (described below). Importantly, the tex-
ture associated with a particular set of values of the image statis-
tics is a ‘‘maximum-entropy” ensemble: a collection of images,
or, equivalently, a single infinite image, that are as random as pos-
sible, given the specified values of the statistics. This ensures that
the image statistics fully determine the information available to
the visual system. The stimuli used in the experiments are then
random samples of this ensemble. For full details concerning the
domain and sampling algorithms, see ((Victor & Conte, 2012);
additional background and rationale may be found in other publi-
cations that use this domain (Hermundstad et al., 2014; Victor,
Thengone, & Conte, 2013; Victor et al., 2015).

Each texture is a binary (black-and-white) coloring of a grid of
checks. The parameters associated with a given texture are the
probabilities of occurrence of each of the ways that 2� 2 neighbor-
hoods can be colored. Although 16 such colorings are possible
(16 ¼ 22�2), there are only 10 degrees of freedom – because the
16 probabilities must sum to 1, and the overlapping portions of
adjoining 2� 2 blocks necessarily must match. It is natural to
recast these 10 degrees of freedom in terms of local correlations,
which are the coordinates of the space. Note that here we are refer-
ring to the coordinates of the stimuli themselves, which need not
correspond to coordinates of a perceptual representation.

This strategy yields four groups of coordinates, corresponding
to first-, second-, third-, and fourth-order correlations (Fig. 1A).
(An nth-order correlation means that n checks must be simultane-
ously considered to determine the correlation’s value.) Each of
these 10 coordinates ranges from �1 to +1; the origin of the space
(the texture corresponding to a value of 0 for each coordinate) is a
completely random binary image.

Coordinates are designated as follows. The single first-order
coordinate, c, is the difference between the probability of a white
check and the probability of a black check. It indicates the lumi-
nance bias: c ¼ þ1 means that all checks are white, c ¼ �1 means
that all checks are black, and c ¼ 0 means that both are equally
likely.

The four second-order coordinates, denoted b , bj, bn, and b=,
measure two-point correlations, in the orientations indicated by



Fig. 1. The space of visual textures, and the segmentation task for measuring thresholds. Panel A shows the 10 coordinates of the space. c is the difference between the
fraction of white checks and the fraction of black checks; the other coordinates (the b’s, the h’s, and a) quantify correlations among two, three, and four checks within a 2� 2
neighborhood. The strips show the effects of varying each coordinate through its allowable range (�1 to +1); the origin of the space (all coordinates equal to 0) is the random
texture. Panel B shows the stimulus sequence for the segmentation task: a fixation spot, followed by a 64� 64 array of checks containing an embedded 16� 64-check target,
followed by a mask. C: Stimulus examples. Top row, left: the reference texture is random, the target has a value of bn ¼ 0:6; right: background and target textures are
interchanged. Bottom row, left: the reference texture has ðbn; b=Þ ¼ ð0:35;0:35Þ; the target has values ðbn ;b=Þ ¼ ð0:95;0:35Þ; right: background and target textures are
interchanged. Red contour indicating target is for illustrative purposes and was not present in the experimental stimuli. Panel A adapted from Fig. 1 of (Victor et al., 2015),
with permission of the copyright holder, Elsevier B.V. Panel B adapted from Fig. 1 of (Victor et al., 2013), with permission of the copyright holder, The Association for Research
in Vision and Ophthalmology.
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their subscripts. The value of each coordinate is the difference
between the probability that two neighboring checks match (i.e.,
both are white or both are black), and the probability that they
do not match (i.e., one is white and one is black). We use the con-
vention that white and black checks are denoted by 1 and 0 respec-
tively. Thus, b ¼ þ1 means that horizontal correlation is
maximum: all 1� 2 blocks are either ð0 0 Þ or ð1 1 Þ and each
(horizontal) row of the image contains only a single color. Con-
versely, b ¼ �1 means that there is maximally negative correla-
tion in the horizontal direction: all 1� 2 blocks are either ð0 1 Þ
or ð1 0 Þ and none are ð0 0 Þ or ð1 1 Þ, and rows have alternat-
ing black and white checks. Intermediate values of b indicate a
bias toward matching neighbors (positive correlations) or mis-
matching neighbors (negative correlations), and b ¼ 0 means that
there is no correlation between horizontally adjacent neighbors,
i.e.,. that matching and mismatching neighbors are equally likely.
The other three second-order coordinates bj, bn, and b= similarly
quantify two-point correlations in the vertical and two diagonal
directions. We designate b and bj as the ‘‘cardinal” b ’s and desig-
nate bn and b= as the ‘‘diagonal” b ’s. Cardinal and diagonal b ’s are
not equivalent under rotation: for cardinal b ’s, the two checks
involved in the correlation are abutting, while for the diagonal
b ’s, they merely share a corner. Wemention this to alert the reader
that differences between the perceptual influences of these coordi-
nates are not related to the classical oblique effect (Doi, Balcan, &
Lewicki, 2007) – since cardinal and diagonal b ’s refer to different
kinds of correlations, not merely correlations that differ by a
rotation.

The four third-order coordinates, hy, hx, hp, and hq, each measure
a three-point correlation within an L-shaped region. The value of
the three-point correlation is determined by comparing the proba-
bility that the L-shaped region contains an even number of white
checks, vs. an odd number of white checks: a value of +1 means
that every such region contains an odd number of white checks;
a value of -1 means that every such region contains an even num-
ber of white checks (and an odd number of black checks). Thus,
hx ¼ þ1 means that the texture only contains configurations with

one or three white checks, namely 1
1 1

� �
, 1

0 0

� �
, 0

1 0

� �
,

or 0
0 1

� �
; such textures have prominent white triangular-

shaped regions pointing downward and to the left. Conversely,
hx ¼ �1 means that the texture only contains configurations with

an odd number of black checks, namely 0
0 0

� �
, 0

1 1

� �
,

0
0 1

� �
, or 1

1 0

� �
; such textures have prominent black

triangular-shaped regions. Here, we only study hy and hp (and mix-
tures of them); previous work has shown that responses to the
other two h ’s are similar (Victor et al., 2013, 2015)

The single fourth-order coordinate, a, quantifies a four-point
correlation. As is the case for the other coordinates, its value is
determined by the probability that the number of white checks
in a region has a given parity -- in this case, the region is a 2� 2
block, For a ¼ þ1, all such regions contain an even number of
white checks; for a ¼ �1, all contain an odd number of white
checks.

Finally, we note that textures defined by h and a, were originally
introduced by Julesz and colleagues (Julesz, Gilbert, & Victor,
1978), in the context of a program to identify the statistical fea-
tures that lead to visual salience (Julesz, 1962, 1981; Julesz,
Gilbert, Shepp, & Frisch, 1973). Construction of these textures can
be carried out as described in that work (Julesz et al., 1978), but
construction of textures with combinations of image statistics
requires other algorithms (Victor & Conte, 2012).
2.2. Threshold measurements: segmentation paradigm

To measure the threshold to detect a change in texture coordi-
nates, we determined the coordinate change needed to allow sub-
jects to segment a homogeneous region into a target and
background. For this purpose, we used the texture segmentation
paradigm introduced by Chubb and coworkers (Chubb, Landy, &
Econopouly, 2004) and later adapted to this stimulus space
(Victor, Chubb, & Conte, 2005; Victor & Conte, 2012; Victor et al.,
2013, 2015). The approach is taken from the latter studies, and is
summarized here.

2.2.1. Stimuli
For the segmentation task, stimuli consisted of 64� 64 arrays of

checks. In each such array, a 16� 64 rectangular target was
embedded (Fig. 1B, C); the outer edge of the target was at a dis-
tance of 8 checks from either the top, left, bottom, or right edge
of the array. The structure of the image within the target differed
from the remainder of the array by its image statistics. The sub-
ject’s task was to indicate the position of the target via a button-
press on a response box.

Each session measured thresholds to detect a change in texture
parameters around a reference point, specified by a vector of coor-
dinates~cref ¼ ðc; b ; bj; bn; b=; hy; hx; hp; hq;aÞ. Two types of trials were
randomly interleaved (Fig. 1C): trials in which the background was
determined by ~cref and the target was determined by a displaced
set of coordinates, ~ctest ¼~cref þ D~c; and trials in which the back-
ground was determined by ~ctest and the target was determined
by~cref . This was done to ensure that the subject identified the tar-
get by identifying the location of a texture boundary, and not just
by identifying a gradual texture gradient across space (Wolfson &
Landy, 1998). Because of this randomization, the latter strategy
could not yield a fraction correct greater than 0.5: detecting the
overall texture gradient would enable the subject to determine,
for example, whether the target was on the left vs. on the right,
but not to disambiguate these possibilities. Analyses are based on
pooling the responses across trial types.

Sessions examined thresholds around reference points in three
coordinate planes: ðc; b Þ, ðb ; bjÞ, and ðbn; b=Þ. These planes were
chosen because (based on previous measurements for thresholds
at ~cref ¼ 0 and pilot studies) sensitivity was high enough to allow
measurements of thresholds in all directions around points that
were substantially displaced from the origin. The following refer-
ence points were chosen: in the ðc; b Þ -plane, the four points
ðc; b Þ ¼ fð�0:3;0Þ; ð0;�0:6Þg; in the ðb ; bjÞ-plane, the eight points
ðb ; bjÞ ¼ fð�0:6;0Þ; ð0;�0:6Þ; ð�0:6;�0:6Þg; in the ðbn; b=Þ -plane,
the eight points ðbn; b=Þ ¼ fð�0:35;0Þ; ð0;�0:35Þ; ð�0:35;�0:35Þg.
In addition to these peripheral reference points, we also included
sessions in which the origin was the reference (i.e., ~cref ¼ 0).
Thresholds were measured for displacements D~c in 8 directions
from each reference point: four rays corresponding to the planes’
axes, and four rays in off-axis directions. Along the axes, we used
five equally-spaced values for D~c, with the maximal values of jD~cj
chosen based on pilot experiments so that performance would typ-
ically range from floor to ceiling: for~cref ¼ 0, we used ±0.25 for c,
±0.45 for the cardinal b ’s, ±0.75 for the diagonal b ’s; for ~cref–0,
we used ±0.20 for c, ±0.36 for the cardinal b ’s, ±0.60 for the diag-
onal b ’s. For the off-axis rays, we used the maximal displacement
along each axis, and a point in the same direction at a relative dis-
tance of 0.7 from the reference. (The range of D~c ’s was slightly
lower for~cref–0 than for~cref ¼ 0, to avoid exceeding the gamut of
each coordinate, ½�1;þ1�).

There are two technical details concerning this construction.
The first was necessary to ensure that the values of the unspecified
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parameters (the subset of fc; b ; bj; bn; b=; hy; hx; hp; hq;ag not explic-
itly manipulated) do not provide additional information. To do this,
texture parameters were determined by a two-step procedure:
first, the test coordinate ~ctest was determined by vector addition
within the specified plane (i.e., within the ðc; b Þ, ðb ; bjÞ, or
ðbn; b=Þ -plane), as described above. Second, the unspecified coordi-
nates of~cref and~ctest ¼~cref þ D~c were determined by the maximum-
entropy construction of (Victor & Conte, 2012) (see its Table 2).
Geometrically, this procedure means that the set of test stimuli
lay along curved trajectories in the 10-dimensional stimulus space,
even though they project to straight lines in the relevant coordi-
nate planes. For points in the periphery of the space, the effects
of this curvature can be substantial. As an example, for the range
studied around the reference point of ðb ; bjÞ ¼ ð�0:6;0Þ, jb j varies
from 0.24 to 0.96. Over this range, a varies from 0.06 to 0.92. From
the point of view of the goals of this work, these nonzero values of
the unspecified coordinates are effectively a matter of convention:
our aim is to compare the perceptual distances inferred from two
tasks, and we use the same coordinate planes for both. But also,
although nonzero reference values of unspecified coordinates
might at first appear strange, this assignment corresponds exactly
to the natural specification and construction of textures with no
spatial correlation (Chubb, Econopouly, & Landy, 1994): a first-
order statistic (the luminance distribution) is specified, and the
high-order statistics follow from a random assignment of each
check according to this distribution.

The second detail concerned the elimination of spurious cues at
the border between target and background. Such spurious cues
might allow a judgment based on statistics that are unique to
the border discontinuity, rather than on the difference in statistics
within target and background (as intended). These spurious cues
would arise if stimuli were created by simply pasting a target strip
with~ctest–0 on top of a background strip with~cref–0 – because the
2� 2 regions that straddle the border between the two compo-
nents have statistics that belong to neither region. An analogous
issue arises with more traditional texture-segmentation stimuli:
for example, at the border between line tokens of one orientation
and line tokens of another, there are shapes that occur in neither
region. To eliminate such spurious cues, each component of the
stimulus was generated by a Markov process that used the last
row from the adjacent component as a seed. This ensured that
every 2� 2 region is based on the statistics of either ~ctest or ~cref ,
and eliminated spurious cues at the borders.

2.3. Procedure

Stimuli were presented on a mean-gray background for 120 ms,
followed by a random mask (Fig. 1B). The display size was 15� 15
deg at a viewing distance of 103 cm (a 64� 64 array of 14-min
checks, each of which was 10� 10 hardware pixels), and contrast
was 1.0. Presentation was on an LCD monitor with a mean lumi-
nance of 23 cd/m2, a refresh rate of 100 Hz, driven by a Cambridge
Research ViSaGe system.

As in Victor et al., 2015, subjects were asked to use a button-
press to identify the position of the target. They were informed that
the target was equally likely to appear in any of four positions (top,
right, bottom, left), and that on every trial, it was present in one of
these positions. Subjects were asked to fixate centrally and not
attempt to scan the stimulus. During training, but not during data
collection, we gave auditory feedback for incorrect responses; this
was to reduce the possibility of gradual learning during the period
of data collection, which lasted several months. After performance
stabilized (approx. 2 h for a new subject), blocks of trials were pre-
sented, with individual trials presented in randomized order. Plane
order, and block order within each plane, was counterbalanced
across subjects. There were 288 trials per block and 15 blocks for
each reference point in each plane (see Victor et al., 2015 for fur-
ther details).

2.3.1. Analysis
Determination of thresholds proceeded as in Victor et al. (2005,

2013, 2015), and is summarized here. Data from each plane were
analyzed separately, with the goal of characterizing sensitivity to
small changes in image statistics in the neighborhood of each ref-
erence point. The first step was to determine sensitivities along
each ray r emanating from a given reference point. To do this, we
found the maximum-likelihood fit of a Weibull function to the
fraction correct (FC),

FCðxÞ ¼ 1
4
þ 3
4
ð1� 2�ðx=arÞbr Þ; ð1Þ

where x is the distance between the test and reference point, ar is
the fitted threshold (i.e., the value of x at which FC=0.625, halfway
between chance (0.25), and perfect (1.0)), and br is the Weibull
shape parameter. The distance x is the Euclidean distance in the

plane being studied: x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2y þ c2z

q
, where cy and cz are the values

of the two coordinates of D~c ¼~ctest �~cref , each drawn from the
fc; b g, fb ;bjg, or fbn;b=g. As in previous work, the exponent br typ-
ically had confidence intervals that included the range 2.2–2.7. To
focus on thresholds, we refit the data from all rays emanating from
each reference point by a set of Weibull functions that shared a
common exponent b, but with the threshold parameter ar free to
vary across rays. 95% confidence intervals for ar were determined
via 1000-sample bootstraps. Sensitivity is defined as 1/threshold,
with corresponding confidence intervals.

Finally, to estimate the area of the isodiscrimination contour
around each reference point without assuming a specific shape
for the contour, we computed the area of the octagon whose ver-
tices were at the fitted thresholds along the 8 rays. Confidence
intervals for the area were determined via a parametric bootstrap
(1000 samples) based on the confidence intervals for the thresh-
olds along each ray.

Across-subject averages of sensitivities or thresholds are com-
puted as the geometric means, and statistics (standard deviations,
t-tests) are computed on the logarithms of the raw values.

2.4. Suprathreshold measurements: border salience

In contrast to the segmentation task, which required subjects to
detect small changes in texture coordinates, the border salience
task required subjects to compare suprathreshold differences. We
detail the stimuli, task, and analysis below.

2.4.1. Stimuli
Each stimulus consisted of a 64� 64-check region that was par-

titioned into four 32� 32-check quadrants (Fig. 2B), with each
quadrant filled by a texture sample drawn from the texture space
described above. Textures in each quadrant were generated to
eliminate spurious cues at their borders, also as described above.
Thus, the appearance of a border between two regions was due
solely to the differences in their defining coordinates.

Each session was devoted to measurements along a single coor-
dinate axis (c, b , bn, hy, or a), or along a diagonal in one coordinate
plane (b ¼ �bj in the ðb ; bjÞ-plane, bn ¼ �b= in the ðbn; b=Þ-plane,
or hy ¼ �hp in the ðhy; hpÞ-plane). In each case, a set of five test
points f~x�2;~x�1;~x0;~x1;~x2gwas chosen as the library of texture coor-
dinates to be used for the stimuli. These five test points were col-
linear and equally spaced, with the central point at the origin (i.e.,.
~x0 ¼ 0). The coordinate values at the extreme points along the axes



Fig. 2. The border salience task. Panel A: The ðbn; b=Þ-plane of visual textures,
illustrating selection of five test points f~x�2;~x�1;~x0;~x1;~x2g (designated x�2; � � � ; x2 in
the Figure). B. Four example stimuli. Each stimulus is divided into four quadrants.
The textures displayed in each quadrant are determined by a random choice of
three test points; one of the test points is used for two adjacent quadrants. The
choice of test points is indicated below each example; the point labels indicate their
locations in Panel A. Black arrows indicate texture borders; the white arrows
indicate the null border between two quadrants determined by the same test point.
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were given by c ¼ �0:25, b ¼ �0:45, bn ¼ �0:75, hy ¼ �1, and
a ¼ �0:85; these matched the range used in the threshold experi-
ment. For the diagonals, the extreme points were given by
ð�0:5;�0:5Þ in all cases (the ðb ; bjÞ-plane, the ðbn; b=Þ-plane, and
the ðhy; hpÞ-plane). These points did not match the locations of
the peripheral reference points used in the threshold experiments
(ð�0:6;�0:6Þ for ðb ; bjÞ and ð�0:35;�0:35Þ for ðbn; b=Þ), as the latter
were positioned as peripherally as possible in the space but still far
enough from its boundaries to enable threshold determinations in
eight directions.

To construct a stimulus (Fig. 2), we drew three distinct values
from the library f~x�2;~x�1;~x0;~x1;~x2g. Two of these values (say, ~xi
and ~xj) specified the textures that appeared in single quadrants,
the third (~xk) specified a texture that appeared in two adjacent
quadrants. Boundaries between the four quadrants consisted of
three actual borders (between the quadrants specified by f~xi;~xjg,
f~xi;~xkg, and f~xj;~xkg) and a fourth position (the boundary between
the two adjacent quadrants specified by ~xk) that is not a texture
border. Four example stimuli are shown in Fig. 2B. There were
240 unique configurations: 5 possibilities for the texture specified
by~xk, 4 positions in which it could be placed, and 12 ¼ 4� 3 pos-
sibilities for the pair f~xi;~xjg that specified the other two quadrants.
2.5. Procedure

Subjects were asked to use a button-press to identify the posi-
tion of the most salient border. They were informed that there
were four potential border positions, and all of them (top, right,
bottom, left) were equally likely. Subjects were instructed to fixate
centrally and not attempt to scan the stimulus. Approximately 50
practice trials were given to ensure that subjects understood the
task.

Data were collected in 10 blocks for most conditions; 20 blocks
(subjects SR, KP, RS) or 25 blocks (subject MC) were used along the
hy ¼ �hp-diagonal in the ðhy; hpÞ-plane. Each block consisted of a
single example of each of the 240 unique types of trials, presented
in random order and with unique random seeds for the texture
samples. Note that there was no correct answer (as the judgment
of greatest salience is intrinsically subjective), but there was
always one answer that was objectively incorrect – the boundary
between the two adjacent quadrants specified by the same texture
coordinates. This null border is indicated in Fig. 2B by the white
arrows. As a check that the subject understood the task, we verified
that for the trials that contained borders between a random texture
and one that was markedly above segmentation threshold, the null
border was selected the least.

The display size was 7:5� 7:5 deg at a viewing distance of
103 cm (a 64� 64 array of 7-min checks, each of which was
5� 5 hardware pixels). Check size was half the size used as in
the segmentation task, as pilot studies suggested that this led to
more confident judgments. (Note that performance in the segmen-
tation task is largely independent of check size (Victor et al.,
2015).) Contrast (1.0), mean luminance (23 cd/m2), and the LCD
monitor, were the same as in the segmentation task.
2.5.1. Analysis
Each response indicates that the subject has judged one border

to be more salient than the other three. The goal of the analysis is
to translate these salience judgments into statements about the
geometry of the perceptual space. To find this geometry, we
assume that the salience of a border between two quadrants spec-
ified by coordinates ~xi and ~xj reflects the perceptual distance
between these coordinates, dð~xi;~xjÞ. That is, we assume that one
border (e.g., between~xi and~xj) is perceived to be more salient than
another border (e.g., between ~xk and ~xm) if dð~xi;~xjÞ > dð~xk;~xmÞ. We
therefore seek a mapping Z that embeds the points sampled by
the library f~x�2;~x�1;~x0;~x1;~x2g into an ordinary vector space, so that
the standard Euclidean distances between the embedded points
Zð~xiÞ account for the observed judgments. The linkage between
the mapping Z and the judgments thus has two components: Z
determines how the distances are calculated via
dð~xi;~xjÞ ¼ jZð~xiÞ � Zð~xjÞj, and the border between ~xi and ~xj is predi-
cated to be more salient than the border between ~xk and ~xm if
jZð~xiÞ � Zð~xjÞj > jZð~xkÞ � Zð~xmÞj.

The approach we took is related to the MLDS method of Malo-
ney et al. (Maloney & Yang, 2003), but extends it in several ways.
The main extension is that we allow for embeddings in more than
one dimension. As a consequence, the embedded points Zð~xiÞ can
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form a loop, making it possible for the endpoints of the test set
(Zð~x�2Þ and Zð~x2Þ) to be closer to each other than to intermediate
points. This violates the ‘‘ordering property” and the ‘‘six-point”
property that are requirements for a successful MLDS model. At
the procedural level, our strategy allows for presentation of null
borders (i.e., two identical stimuli), which is explicitly excluded
by the MLDS method (Knoblauch & Maloney, 2008; Maloney &
Yang, 2003). However, other aspects of our approach, specifically
the uniform additive error model and the maximum-likelihood cri-
terion for fitting parameters – were identical to Maloney et al.
(Knoblauch & Maloney, 2008; Maloney & Yang, 2003).

To model uncertainty in a subject’s decision process, we assume
that there is an internal noise associated with comparing two dis-
tances. Specifically, we posit that pðð~xi;~xjÞ > ð~xk;~xmÞÞ, the probabil-
ity of judging the border between~xi and~xj to be more salient than
the border between~xk and~xm, is a sigmoidal function of the differ-
ence in distances:
pðð~xi;~xjÞ > ð~xk;~xmÞÞ ¼ 1
2 1þ erf dð~xi ;~xjÞ�dð~xk ;~xmÞ

2r

� �� �
¼ 1

2 1þ erf jZð~xiÞ�Zð~xjÞj�jZð~xkÞ�Zð~xmÞj
2r

� �� � : ð2Þ

When dð~xi;~xjÞ � dð~xk;~xmÞ, p approaches 1; when
dð~xi;~xjÞ � dð~xk;~xmÞ, p approaches 0.

We note that several processes may contribute to the uncer-
tainty parameter r in Eq. (2). One source of subject uncertainty
is noise associated with estimation of the individual texture coor-
dinates~x or their mapped images Zð~xÞ. A second is noise associated
with subtracting these coordinates to compute the distances
dð~xi;~xjÞ. A third is noise at the stage at which the two distances
are compared. As we will see below, the best-fitting values of r
vary over at least a fivefold range, depending on the axis that is
probed by the stimulus library. This suggests that the major contri-
butions to uncertainty arise prior to the final stage of comparing
distances, rather than at the final comparison.

We had also considered an alternative model for subject uncer-
tainty, in which the error in distance comparison was related to the
ratio of the distances being compared, rather than their absolute
difference as in Eq. (2). However, in pilot studies (two subjects,
along the bj ¼ �b and hy ¼ �hp directions, seven test points and
no null borders), this Weber-type uncertainty provided no advan-
tage: compared to the absolute-difference error model of Eq. (2), it
provided a worse fit in two datasets, a better fit in one, and a very
slightly worse fit in a fourth. Most likely, the Weber-like error
model fails to improve on the absolute-difference model because
that model already takes into account three kinds of noise, and
the Weber-like model would only be expected to make a signifi-
cant additional contribution when the distances being compared
were many times threshold. Finally, to apply a Weber-like error
model to a paradigm with null borders (i.e., zero distances), one
would likely need to add yet another parameter to avoid anomalies
from divisions by zero. Therefore, as in Maloney et al. (Knoblauch &
Maloney, 2008; Maloney & Yang, 2003), we settled on a model for
subject uncertainty that depended only on the difference in the
distances being compared.

To determine the values Zð~xiÞ and r that best account for the set
of salience judgments via Eq. (2), we used a maximum-likelihood
approach (Knoblauch & Maloney, 2008; Maloney & Yang, 2003).
First, for each dataset, we represented a subject’s responses by
the number of times in which the subject perceived the border
between ~xi and ~xj to be more salient than the border between ~xk
and ~xm, a tally denoted Nðð~xi;~xjÞ > ð~xk;~xmÞÞ. Each trial contributed
to three such tallies. This is because if a subject perceived one of
these borders to be the most salient, we took it as a judgment that
this border was more salient than the other three borders pre-
sented on that trial. For example, consider the top left panel of
Fig. 2B. This stimulus example consists of four texture patches:
two patches from texture coordinate ~x2, and one each from ~x1
and~x0. Four potential borders are formed: the null border between
the two patches from~x2 at the top, and three others: ð~x0;~x2Þ at the
right, ð~x0;~x1Þ at the bottom, and ð~x1;~x2Þ at the left. Say a subject
chooses the border between~x0 and~x2 as the response. We take this
as a judgment that the ð~x0;~x2Þ -border was more salient than the
other three that were present in the same trial, namely, ð~x0;~x1Þ,
ð~x1;~x2Þ, and ð~x2;~x2Þ. Thus, this judgment contributes a single count
to each of Nðð~x0;~x2Þ > ð~x0;~x1ÞÞ, Nðð~x0;~x2Þ > ð~x1;~x2ÞÞ, and
Nðð~x0;~x2Þ > ð~x2;~x2ÞÞ.

We then determined the mapping Z that maximized the log
likelihood of the tallies Nðð~xi;~xjÞ > ð~xk;~xmÞÞ:
LL ¼
X
i;:j;k;m

Nðð~xi;~xjÞ > ð~xk;~xmÞÞ ln pðð~xi;~xjÞ > ð~xk;~xmÞÞ þ lnK: ð3Þ

The log likelihood in Eq. (3) depends on the embedding Z via the
probabilities pðð~xi;~xjÞ > ð~xk;~xmÞÞ, via Eq (2). K is model-
independent; it is a combinatorial constant that counts the number
of orders in which the responses could have been made.

We then use a nonlinear optimization procedure (Matlab’s
fminsearch) to adjust the values of Zð~xiÞ and r to maximize the
log likelihood in Eq. (3). To reduce the chance of finding only a local
maximum, the optimization was initialized with several different
configurations for the points Zð~xiÞ: along a line, on the circumfer-
ence of a circle, star-shaped, and L-shaped. This procedure was car-
ried out allowing Zð~xiÞ to assume values in a 1-, 2-, 3-, and in some
cases 4- dimensional space. Note that this procedure only determi-
nes the relative locations of the points Zð~xiÞ, not absolute coordi-
nates: a rotation or translation of the set of values Zð~xiÞ
necessarily leads to identical values for the log likelihood. Simi-
larly, multiplying all coordinates Zð~xiÞ and the uncertainty param-
eter r by a constant factor k also does not change log likelihood.
We therefore ‘‘tethered” a sufficient number of the coordinates of
the mapping to remove these spurious degrees of freedom during
the optimization. Following optimization, we then found the trans-
lation, rotation and dilation of the coordinates Zð~xiÞ that minimized
the distance, in the root-mean-squared sense, to the original tex-
ture coordinates~xi. (The translation is determined by the condition
that the centroid of the Zð~xiÞ is zero; the rotation and dilation is
determined by a Procrustes transformation.) This provides a stan-
dard coordinate system to compare results across subjects, and it
does not change the log likelihoods, as it leaves Eq. (2) unchanged
provided that r is similarly scaled. With this transformation, r can
be interpreted as an uncertainty in the perceptual representation,
expressed in units of image statistics.

To determine confidence intervals for the values of Zð~xiÞ, the
above procedure was carried out for 50 bootstrapped datasets.
These surrogate datasets were created by randomly drawing
responses from the observed dataset, in which each of the 240
unique kinds of stimuli were presented the same number of times
as in the experiment. The Zð~xiÞ determined from each of the 50 sur-
rogates was individually rotated into the standard position
described above. The confidence region was taken as the
minimum-volume ellipsoid that contained 0.95 of the probability
of a Gaussian whose means, variances, and covariances matched
the results of the surrogate analyses.

To place the log likelihoods on an intuitive scale, we normalized
them into the range ½0;1�. The lower point of the range was set to
LLrand, the log likelihood if responses were random; the upper point
of the range was set to LLmax, the log likelihood if the modelled
response probabilities exactly matched the observations. That is,
an embedding Z that was no better than chance at accounting for
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the responses would have a normalized log likelihood of 0, and an
embedding that fully accounted for the response probabilities
would have a normalized log likelihood of 1.

As mentioned above, the above procedure was carried out for
embeddings Z into spaces of several dimensions. As each dimen-
sion adds further degrees of freedom, we used the likelihood ratio
test (Weisstein, 2016) to determine whether the improvement in
the maximum log likelihood (Eq. (3)) was large enough to justify
an increase in the embedding dimension. In all cases, there was
no improvement beyond 2 dimensions, and, as indicated in Results,
many datasets were best fit by a one-dimensional embedding.

2.6. Subjects

Studies were conducted in 4 normal subjects (1 male, 3 female),
ages 21–54; all subjects completed all experiments. Of the 4 sub-
jects, MC is an experienced psychophysical observer, and the other
subjects had approximately 10 (KP, RS) to 40 (SR) hours of viewing
experience at the start of the study, as subjects in the experiments
of Victor et al. (2015). MC and SR are authors; KP and RS were naïve
to the purposes of the experiment. All had visual acuities (cor-
rected if necessary) of 20/20 or better.

This work was carried out in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki), with
the approval of the Institutional Review Board of Weill Cornell,
and with the consents of the individual subjects.

3. Results

3.1. Overview

To probe the strategies that the visual system uses to represent
a perceptual space, we examine two kinds of perceptual judg-
ments, based on threshold and suprathreshold discriminations.
The threshold measurements determine the perceptual distances
between nearby points in the space, and therefore we make these
measurements around a number of different reference points.
Suprathreshold measurements assay perceptual distances at
longer ranges, so we make these measurements at points that span
trajectories that run through the space. As we will show, discrim-
ination thresholds are approximately constant across the reference
points studied, suggesting that distances are computed via a
coordinate-type representation of the domain of local image statis-
tics. But the long-range perceptual distances that are deduced from
the suprathreshold measures are fundamentally inconsistent with
these local distances, suggesting that these distances are computed
via a separate representation of same domain.

3.2. Discrimination thresholds

In the discrimination threshold experiments, we focused on the
texture coordinates for which visual sensitivity is greatest, as this
allowed us to measure thresholds centered around the greatest
range of reference points. Specifically, we studied textures speci-
fied by combinations of first- and second-order coordinates (the
plane ðc; b Þ), and two combinations of second-order coordinates
(the planes ðb ; bjÞ, and ðbn; b=Þ). In each plane, we measured the
ability to discriminate a test texture, specified by ~ctest ¼~cref þ D~c,
from a reference texture, specified by ~cref . We used 5 choices for
~cref in the plane ðc; b Þ and 9 choices for ~cref in the planes ðb ; bjÞ,
and ðbn; b=Þ; from each reference point we studied displacements
D~c in 8 directions. Reference, test, and displacement textures
always were constrained to lie in one of these three planes.

Fig. 3 presents detailed discrimination data from one subject
(MC) in the ðc; b Þ-plane, and shows that the threshold to detect
a change in image statistics is largely independent of the reference
point. Panel A shows threshold measurements with respect to the
random texture as the reference point, i.e., with~cref ¼ ð0;0Þ. Each of
the eight psychometric functions corresponds to a different direc-
tion for the displacement D~c, and, as expected, shows that perfor-
mance increases as a function of the displacement magnitude jD~cj.
Panel B shows that the psychometric functions with respect to a
reference texture containing strong horizontal pairwise correla-
tions (~cref ¼ ð0; 0:6Þ) are similar to those obtained with respect to
the origin as a reference (Panel A).

To determine whether this similarity held in all directions in the
ðc; b Þ -plane, and also about other reference points, the set of
threshold measurements around each reference point was used
to construct an isodiscrimination contour. The contours corre-
sponding to five reference points (the origin and one peripheral
point, as in Fig. 3, and three other peripheral reference points),
are shown in the top panels of Fig. 4B. Parallel data from three
other subjects are shown below. In general, isodiscrimination con-
tours around the peripheral points are similar to those around the
origin. The one consistent exception is that in all subjects, the
threshold for displacements in the positive and negative c-
directions from the reference point located at b ¼ 0:6 (the blue
contour) is approximately twice the threshold from the reference
point at the origin. These data are summarized in Fig. 4C, which
shows the typical distance to threshold around each reference
point, quantified by the equivalent radius of the corresponding
isodiscrimination contour. These distances are similar (typical
variation of less than 10%) across the sampled reference points.

Measurements around 9 reference points in the ðb ; bjÞ-plane
and 9 reference points in the ðbn; b=Þ-plane showed similar findings.
In the ðb ; bjÞ plane (Fig. 5B), there are modest changes in the shape
of the contours. The isodiscrimination contours centered at the ori-
gin are nearly circular. For the contours surrounding reference
points along the axes (Fig. 5B left column), there is a noticeable
radial distortion; smaller distortions are also present for the con-
tours surrounding the off-axis reference points (Fig. 5B right col-
umn). In the ðbn; b=Þ-plane (Fig. 6B), there are two subjects (SR
and RS) with large thresholds in specific directions (Fig. 6B left col-
umn), but in most cases (30 of the 32 contours with~cref–0, includ-
ing all contours around off-axis reference points shown in Fig. 6B
right column), the isodiscrimination contours have a size that is
similar to their size at the origin, and are elongated along the same
axis.

3.2.1. Approximate independence of location in the space
As a first step in summarizing these findings, we determine, for

each reference point, the typical displacement needed to reach
threshold, essentially a just-noticeable difference (JND) that takes
into account all displacement directions. We call this the ‘‘charac-
teristic distance,” and define it to be the radius of a circle whose
area is equal to the area of the measured isodiscrimination con-
tour. If distances between coordinates are perceived in a uniform
fashion throughout the space, the characteristic distance will be
constant. Alternatively, an increase in the characteristic distance
in some sector of the space means that discrimination thresholds
are generally higher: a JND on a perceptual ruler would then corre-
spond to a greater numerical difference between image statistic
values.

Characteristic distances differ from plane to plane (because of
differences in sensitivity to each kind of local image statistic),
but, importantly, within each plane, their values at peripheral ref-
erence points differ only modestly from their values at the origin.
Table 1 details this, showing the characteristic distances at each
reference point and the ratios of the characteristic distances at
peripheral reference points to characteristic distances at the origin.



Fig. 3. Thresholds for texture segmentation around the origin (panel A) and around the reference point ðc; b Þ ¼ ð0;0:6Þ (panel B). Each plot shows psychometric functions for
the segmentation task in eight directions in the ðc;b Þ -plane; the central panel shows the stimulus domain for ðc; b Þ. The labels under each plot indicate the maximum
displacement from the reference point. Smooth curves are Weibull function fits with a common value of the shape parameter br for all rays (Eq. (1)); error bars are 95%
confidence intervals. Subject: MC.
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Fig. 4. A. The ðc;b Þ stimulus domain. B. Isodiscrimination contours around the origin (gray) and four peripheral reference points within the ðc;b Þ plane (colors). Peripheral
reference points were at ðc; b Þ ¼ fð�0:3;0Þ; ð0;�0:6Þg. C. Characteristic distance to threshold at the origin and at four peripheral reference points, determined by the radius of
the circle whose area equals the area of the isodiscrimination contour. Colors correspond to the isodiscrimination contours in A. Error bars: 95% confidence intervals. Four
subjects.
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There are 80 such measurements: 4 subjects � (4 measurements in
the ðc; b Þ-plane and 8 measurements in each of the two b-planes).
Other than two outliers, these ratios are close to 1. Specifically, in
the ðc; b Þ-plane, median across-subject ratios range from 0.945 to
1.380; in the ðb ; bjÞ-plane, they range from 0.988 to 1.137; and in
the ðbn; b=Þ-plane, they range from 0.963 to 1.177. In most cases,
the characteristic distances at peripheral points differ from those
at the origin by less than 10%. The only instance in which there
is more than a 20% variation in characteristic distances is for dis-
placements around the reference point ðc; b Þ ¼ ð0:0;0:6Þ, as men-
tioned above in connection with Fig. 4; the median ratio here is
1.380.



Fig. 5. A. The ðb ;bjÞ stimulus domain. B. Isodiscrimination contours around the origin (gray) and eight peripheral reference points within the ðb ; bjÞ plane (colors): at
ðb ;bjÞ ¼ fð�0:6;0Þ; ð0;�0:6Þg (first column) and at ðb ; bjÞ ¼ fð�0:6;�0:6Þg (second column). C. Characteristic distance to threshold at the origin and at eight peripheral
reference points. Other details as in Fig. 4.
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In sum, the above results show that near threshold, the percep-
tual distance between sets of image-statistic coordinates (i.e., two
points in the perceptual domain) depends primarily on their sepa-
ration, and only weakly on the absolute location within the space.
This suggests that image statistics are represented by points in a
vector space, and perceptual distances correspond to vector dis-
tances in this space. However, isodiscrimination contours are not
strictly uniform, and this means that perceptual distance is not
strictly independent of absolute location. These non-uniformities
imply that there are distortions (i.e., nonlinearities) in the mapping
from image-statistic coordinates to the vector space in which the
distances are measured, as a linear mapping would produce ellip-
tical isodiscrimination contours at the peripheral locations that
would exactly match the size and shape of the contour at the
origin.

3.3. Suprathreshold measures

3.3.1. Motivation
We next consider whether this picture extends to the percep-

tion of differences between widely separated points in the stimu-
lus domain. To obtain information on these perceptual distances,
we ask subjects to compare the salience of several
simultaneously-presented borders. That is, the salience of the bor-
der between two texture samples is our operational definition of
the perceptual distance between their defining image statistics,



Fig. 6. A. The ðbn ;b=Þ stimulus domain. B. Isodiscrimination contours around the origin (gray) and eight peripheral reference points within the ðbn;b=Þ plane (colors): at
ðbn; b=Þ ¼ fð�0:35;0Þ; ð0;�0:35Þg (first column) and at ðbn; b=Þ ¼ fð�0:35;�0:35Þg (second column). C. Characteristic distance to threshold at the origin and at eight peripheral
reference points. Note the broken axes for subjects SR and RS to allow for plotting of outliers. Other details as in Fig. 4.
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and the ranking of border salience is our indicator of which dis-
tance is largest. We then attempt to account for subjects’ reports
by finding a specific geometry for the points corresponding to tex-
ture samples – that is, a placement of these points so that the dis-
tances between them correspond to the salience rankings.

This analysis yields two kinds of information: first, the geome-
try that we infer from the relative distances of the points, and sec-
ond, the precision of the observer’s comparisons. If the
representation used for segmentation thresholds is also used for
border salience judgments, the above threshold experiments
provide expectations for what we will find. With regard to geome-
try: if the mapping from the image-statistic coordinates to the per-
ceptual space is strictly linear, then the perceptual distances
between a set of equally-spaced points in the domain of image
statistics will be accounted for by a set of equally-spaced points
along a straight trajectory in the vector space. Nonlinear distor-
tions of the mapping from the images-statistic coordinates to the
perceptual space will lead to unequal spacings of the points, or a
curvature of their trajectory. With regard to precision: if distances
are measured by subtracting coordinates, then we anticipate that



Table 1
Characteristic distances at the origin and peripheral reference points.

ðc; b Þ: origin (0.0,0.6) (0.0,�0.6) (0.3,0.0) (�0.3,0.0)

Characteristic distance at reference point
MC 0.157 0.214 0.141 0.158 0.165
SR 0.198 0.235 0.158 0.189 0.200
KP 0.159 0.223 0.177 0.192 0.205
RS 0.148 0.224 0.146 0.181 0.192
geomean 0.165 0.224 0.155 0.179 0.190
median 0.158 0.223 0.152 0.185 0.196

Characteristic distance relative to origin
MC 1.363 0.898 1.004 1.053
SR 1.189 0.797 0.953 1.008
KP 1.397 1.110 1.203 1.287
RS 1.515 0.991 1.227 1.302
geomean 1.361 0.942 1.090 1.155
median 1.380 0.945 1.104 1.170

ðb ;bjÞ: origin (0.6,0.0) (�0.6,0.0) (0.0,0.6) (0.0,�0.6) (0.6,0.6) (0.6,�0.6) (�0.6,0.6) (�0.6,�0.6)

Characteristic distance at reference point
MC 0.219 0.254 0.231 0.243 0.233 0.282 0.246 0.243 0.250
SR 0.297 0.302 0.314 0.277 0.311 0.325 0.296 0.365 0.383
KP 0.243 0.248 0.243 0.259 0.271 0.269 0.239 0.243 0.275
RS 0.271 0.264 0.263 0.271 0.279 0.314 0.257 0.255 0.276
geomean 0.256 0.266 0.261 0.262 0.272 0.297 0.259 0.272 0.292
median 0.257 0.259 0.253 0.265 0.275 0.298 0.252 0.249 0.276

Characteristic distance relative to origin
MC 1.163 1.058 1.110 1.065 1.290 1.125 1.109 1.142
SR 1.016 1.054 0.930 1.045 1.092 0.994 1.228 1.288
KP 1.021 1.001 1.066 1.117 1.107 0.983 1.001 1.133
RS 0.973 0.970 0.998 1.030 1.158 0.948 0.940 1.016
geomean 1.041 1.020 1.024 1.064 1.159 1.010 1.064 1.141
median 1.019 1.028 1.032 1.055 1.132 0.988 1.055 1.137

ðbn; b=Þ: origin (0.35,0.0) (�0.35,0.0) (0.0,0.35) (0.0,�0.35) (0.35,0.35) (0.35,�0.35) (�0.35,0.35) (�0.35,�0.35)

Characteristic distance at reference point
MC 0.364 0.419 0.378 0.377 0.375 0.418 0.342 0.339 0.371
SR 0.387 0.465 0.660 0.501 16.907 0.459 0.381 0.404 0.412
KP 0.392 0.396 0.408 0.417 0.400 0.415 0.385 0.478 0.389
RS 0.453 11.440 0.424 0.423 0.503 0.461 0.369 0.340 0.384
geomean 0.398 0.969 0.455 0.427 1.063 0.438 0.369 0.386 0.389
median 0.389 0.442 0.416 0.420 0.452 0.439 0.375 0.372 0.387

Characteristic distance relative to origin
MC 1.151 1.038 1.037 1.032 1.149 0.941 0.933 1.021
SR 1.203 1.706 1.295 43.711 1.187 0.984 1.045 1.065
KP 1.012 1.041 1.064 1.022 1.061 0.985 1.220 0.994
RS 25.233 0.934 0.933 1.110 1.016 0.813 0.750 0.846
geomean 2.438 1.146 1.074 2.675 1.101 0.928 0.972 0.978
median 1.177 1.040 1.050 1.071 1.105 0.963 0.989 1.008

Characteristic distances to threshold at each reference point, in each of the three coordinate planes studied. Characteristic distance is defined as the radius of a circle whose
area is equal to that of the isodiscrimination contour. The second half of each section of the table shows the ratio of the characteristic distance measured at the peripheral
points in the space, to the characteristic distance at the origin. Data are summarized across subjects by the geometric mean and the median.
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the uncertainty for distance comparisons will be governed by the
precision with which the texture coordinates are represented,
i.e., the thresholds measured in the segmentation experiments.
(Note that we don’t anticipate that the segmentation thresholds
will match the uncertainties, only that they determine them: an
additional fixed uncertainty might be introduced at the stage of
subtraction of these coordinates, or when the differences are com-
pared, and there may also be differences related to the length of
the border or the size of the patch.)

3.3.2. Border salience experiments: on-axis directions
We collected data using the border salience task described in

Methods. Briefly, subjects viewed an image that was subdivided
by quadrant into four texture samples, with each sample selected
to represent one of the five equally-spaced test points (Fig. 2A).
They were asked to identify which of the four borders was most
salient. Each response was interpreted as three pairwise compar-
isons: the perceptual distance between the points that defined
the chosen border was larger than the perceptual distance between
the other three texture pairs.

Fig. 7B shows a summary of a typical set of responses, for a set
of five test points along the positive and negative bn-axis (Fig. 7A).
As expected, borders between points that were further separated
along the axis tended to be judged more salient than borders
between points that were close together. As a confirmation that
the intended task was understood, there were very few trials in
which a subject chose a border between identical textures as the
most salient (upper row in Fig. 7B). To convert these judgments
of relative salience into perceptual distances, we adopted a simple
decision-rule model, in which the probability that a subject consid-
ered one distance to be greater than another was a sigmoidal func-
tion of the difference between the distances (see Methods, Eq. (2)).
The slope of this sigmoidal function, determined by the parameter
r in Eq. (2), can be interpreted as the uncertainty associated with
comparing or computing distances, and for simplicity, we assume
that this uncertainty is constant within each dataset.



Fig. 7. The pattern of responses in a border salience experiment along the bn-axis.
Panel A: locations of the five test points along the bn-axis, equally spaced from
bn ¼ �0:75 to bn ¼ þ0:75. Panel B: The frequency that a border between one pair of
patches was judged more salient than the border between a second pair. White
indicates a border pair that was not presented. Data are grouped according to the
veridical separation in the domain, illustrated in Panel A. For a breakdown
according to individual pairs of test points, see Supplementary Fig. 1. Subject: KP.
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We then sought a transformation Z from the five test points ~xi
into a vector space, such that the vector-space distances between
the embedded points Zð~xiÞ had the greatest likelihood of yielding
the observed pattern of responses. We make no assumptions con-
cerning the form of the mapping Z from the stimulus space to the
perceptual space; we simply determine it in a point-by-point fash-
ion. This procedure was carried out for embeddings into spaces of
dimensions 1, 2, and 3 (and for some datasets, 4); in all cases, there
was no improvement in the fit to the psychophysical data beyond
dimension 2, as determined by the likelihood ratio test (Weisstein,
2016). Note that there are two intrinsic ambiguities in this proce-
dure. First, en-bloc rotating and translating the embedded points
Zð~xiÞ does not change their mutual distances, and thus, yields an
identical fit to the data. Second, scaling (i.e.,. dilating or contract-
ing) the coordinates of the embedded points also provides an iden-
tical fit to the data, provided that the same rescaling is applied to
the uncertainty parameter r. To resolve these ambiguities, we
set the rotation, translation, and scaling so that the embedded
points Zð~xiÞ would be aligned as closely as possible with the origi-
nal texture coordinates~xi, and scaled r accordingly (see Methods).
This transformation expresses r in units of the original texture
coordinates.

Fig. 8 and Table 2 show the results of this analysis for all exper-
iments along single coordinate axes (c, b , bn, hy, and a). We first
consider the geometry of the embedded points Zð~xiÞ, and then
the observers’ uncertainties r. Along the image-statistic axes c
and b , the expectations based on the segmentation-threshold data
held quite well: the five test points~xi mapped to embedded points
Zð~xiÞ that were approximately equally spaced in a linear array. For
the other image-statistic axes, some deviations were apparent:
unequal spacing of the points for bn, hy, and a, and curvature of
the array for bn and hy (and in subject SR for a). However, when
curvature of the trajectory was present, it was gentle: the ratio of
the chord length to the length along the arc had a mean of 0.75
or greater (see Table 2). Also, note that the inferred distances pro-
vide a good account of the border salience judgments. First, the
model fit was good (normalized log likelihoods above 0.9 in all
cases, and typically above 0.95 (Table 2)). Second, the model uncer-
tainty (i.e., the confidence regions for the locations of Zð~xiÞ that we
inferred from the subjects’ response) was small. This is shown by
the contour lies in Fig. 8, which are smaller than the plotted sym-
bols in nearly all cases, and only easily visible for the a dataset for
subject SR.

The observers’ positional uncertainties r are shown in Table 2,
and plotted in Fig. 9A, as a function of the thresholds obtained in
the segmentation experiment. There is a tight relationship, con-
firming the expectation that the positional uncertainties in the bor-
der salience experiment are linked to the thresholds in the
segmentation experiment. Note that this relationship is indistin-
guishable from a strict proportionality (the regression line nearly
traversed the origin: y-intercept of 0.02, with 95% confidence limits
-0.04 to 0.07). This means that the thresholds found in the segmen-
tation experiment appear to account for the uncertainties of the
distance comparisons inferred from the border salience
comparisons.
3.3.3. Border salience experiments: off-axis directions
In contrast to the behavior observed for on-axis points, border

salience comparisons for points along off-axis directions in the
coordinate planes showed large deviations from the behavior
anticipated from the segmentation experiments. These differences
were seen both in the geometry of the embedded points Zð~xiÞ that
accounted for the judgments, and for the inferred uncertainties r.

Fig. 10 shows the border salience judgments for one subject, KP,
as this already reveals a behavior that is unexpected from the seg-
mentation experiments. For points along the bn ¼ b= -line
(Fig. 10B), the pattern of responses was similar to what was seen
for the on-axis test points shown in Fig. 7: borders between texture
samples with more widely separated image statistics tended to be
judged as more salient (bottom row of Fig. 10B: separations of 4
judged as more salient than separations of 1, 2, or 3). But for points
along the bn ¼ �b= -line, a different pattern emerged (Fig. 10C):
borders between texture samples with the most widely separated
image statistics were judged as less salient than borders between
texture samples with intermediate sets of statistics (bottom row
of Fig. 10C: separation of 4 judged as less salient than separations
of 1, 2, or 3).

The embedding analysis confirmed these observations (subject
KP in row 3 of Fig. 11). For points along the bn ¼ b=-line (third col-
umn), the embedded points were approximately equally-spaced
and collinear, as it is for many of the on-axis datasets (Fig. 8).
However, for points along the bn ¼ �b=-line (fourth column), the
embedded points are unequally-spaced for all subjects, and form
a curved trajectory for three of them (SR, KP, and RS). For two
of the subjects (SR and KP), the curvature is so sharp that the
points Zð~x�2Þ and Zð~x2Þ, which are on opposite sides of the
texture space, are perceptually closer to each other than either
is to the origin. A similarly sharp curvature was seen along the
hy ¼ �hp-line in these subjects (sixth column). For subjects MC
and RS, the uncertainty ellipses preclude certainty as to
whether the curvature is also extreme enough to generate this
‘‘wraparound” behavior.



Fig. 8. Multidimensional scaling of border salience judgments along the coordinate axes. The locations of the five test points f~x�2;~x�1;~x0;~x1;~x2g are indicated by their color,
referenced to the key in upper left; they are equally-spaced along the axes with ranges of �0:25 (c), �0:45 (b ), �0:75 (bn), �1:0 (hy), and �0:85 (a). The scale bar indicates a
distance (dð~xi;~xjÞ in Eq. (2)) of 0.1, in the absolute units of image statistics. For each plot, the positional uncertainty (r in Eq. (2)) required to account for the salience
judgments is given the ‘‘2D” column of Table 2. Contour lines, where visible, indicate 95% confidence regions. Four subjects.

J.D. Victor et al. / Vision Research 137 (2017) 1–23 15
The low border saliences between points at the ends of the
bn ¼ �b= and hy ¼ �hp-lines are not merely reflections of intrinsic
properties of the stimulus space. More precisely, from the stand-
point of an ideal observer that fully utilizes the image statistics,
the similarity between image patches (measured by the
Kullbach-Leibler divergence) increases monotonically. This holds
not only in the on-axis directions studied in Figs. 7 and 8, but also
in the oblique directions studied in Figs. 10 and 11. Thus, the low
salience for borders between these points is a consequence of
how these image statistics are processed and represented, and
not due to intrinsic characteristics of the stimuli themselves.

The contrast between the off-axis results and findings for the
on-axis datasets (Fig. 8) is highlighted by quantification of the
embedding analysis (Table 2). A one-dimensional embedding
accounts for most of the judgments for on-axis test points, but
not for test points in the off-axis directions in which the image
statistics have opposite sign. This is seen from the normalized
log-likelihood (see Methods) – a quantity that is zero for a model
that is no better than chance, and one for a perfect model. For
the on-axis datasets, the normalized log-likelihood is typically
greater than 0.9 for the one-dimensional embedding. Two-
dimensional models are not significantly better than one-
dimensional models for any subject (c and b ), or for three of the
four subjects (a), and when there is an improvement, the extent
of the improvement is modest (	0.03 normalized log likelihood).
In contrast, for test points along opposite-sign diagonals, a 2-
dimensional model fit yields an improvement of at least this
amount in 9 of the 12 datasets. The curvature associated with
the two-dimensional fit shows the same contrast: for on-axis data-
sets, the ratio of the chord length (the distance between the first
and last data points) and the arc length (the distance along the tra-
jectory) ranges from 0.7 to 1.0, while along opposite-sign diago-
nals, 8 of 12 datasets have a ratio below 0.7.

We note that the poor fit of the 1-dimensional model and the
consequent need for a two-dimensional curved locus in some data-
sets is unlikely to be a consequence of omitting a Weber-type com-
ponent of subject uncertainty for comparing relative distances (see
Methods). Specifically, this type of error would be expected to have
a maximal impact in the datasets in which the compared distances
are markedly suprathreshold (e.g., the directions c, b , and b ¼ bj),
and a minimal impact in which the compared distances are close to
threshold (e.g., the direction hy ¼ �hp). However, Table 2 shows the
opposite: a 1-dimensional embedding suffices when the compared
distances are markedly suprathreshold and yields a good model fit
(normalized log likelihood ratio typically >0.95), but the
1-dimensional embedding fails when the distances are close to
threshold (normalized log likelihood ratio <0.6).

The uncertainty parameter r (final columns of Table 2 and
Fig. 9) also shows very different behavior for the off-axis datasets,
compared to the on-axis datasets. As mentioned above, for the on-
axis datasets (Fig. 9A), r was nearly proportional to segmentation
threshold. For the off-axis datasets (Fig. 9B), r had a much shal-
lower dependence on segmentation threshold. Correspondingly,
confidence intervals for the regression parameters of
Fig. 9A and B are non-overlapping (statistics given in figure
legend).

To examine the dependence of r on segmentation threshold in
another way, we show the ratio of these quantities as a function of



Table 2
Multidimensional scaling of border salience judgments.

normalized log likelihood improvement from 1D to
2D

chord length/arc length uncertainty r

1D 2D DNLL p 1D 2D 1D 2D

c-axis
MC 0.973 0.973 0.000 1.000 1.000 1.000 0.11 0.11
SR 0.943 0.943 0.000 1.000 1.000 1.000 0.15 0.15
KP 0.954 0.954 0.000 1.000 1.000 1.000 0.16 0.16
RS 0.958 0.958 0.000 1.000 1.000 1.000 0.12 0.12
mean 0.957 0.957 0.000 1.000 1.000 0.14 0.14
median 0.956 0.956 0.000 1.000 1.000 0.14 0.14

b -axis
MC 0.962 0.962 0.000 1.000 1.000 1.000 0.20 0.20
SR 0.918 0.918 0.000 1.000 1.000 1.000 0.25 0.25
KP 0.958 0.958 0.000 1.000 1.000 1.000 0.22 0.22
RS 0.972 0.972 0.000 1.000 1.000 1.000 0.20 0.20
mean 0.953 0.953 0.000 1.000 1.000 0.21 0.21
median 0.960 0.960 0.000 1.000 1.000 0.21 0.21

bn-axis
MC 0.947 0.972 0.025 0.000 1.000 0.752 0.28 0.21
SR 0.960 0.976 0.016 0.000 1.000 0.801 0.32 0.26
KP 0.920 0.963 0.043 0.000 1.000 0.708 0.38 0.28
RS 0.939 0.966 0.026 0.000 1.000 0.746 0.30 0.23
mean 0.941 0.969 0.028 1.000 0.752 0.32 0.25
median 0.943 0.969 0.026 1.000 0.749 0.31 0.25

hy-axis
MC 0.970 0.982 0.012 0.000 1.000 0.827 0.40 0.34
SR 0.933 0.950 0.017 0.000 1.000 0.819 0.58 0.50
KP 0.843 0.907 0.064 0.000 1.000 0.673 0.87 0.64
RS 0.894 0.919 0.026 0.000 1.000 0.761 0.77 0.63
mean 0.910 0.940 0.030 1.000 0.770 0.66 0.53
median 0.913 0.935 0.021 1.000 0.790 0.68 0.56

a-axis
MC 0.949 0.949 0.000 1.000 1.000 1.000 0.39 0.39
SR 0.911 0.919 0.008 0.009 1.000 0.860 0.59 0.55
KP 0.928 0.928 0.000 1.000 1.000 1.000 0.47 0.47
RS 0.923 0.923 0.000 1.000 1.000 1.000 0.43 0.43
mean 0.928 0.930 0.002 1.000 0.965 0.47 0.46
median 0.925 0.925 0.000 1.000 1.000 0.45 0.45

b ¼ bj
MC 0.969 0.969 0.000 1.000 1.000 1.000 0.21 0.21
SR 0.967 0.967 0.000 1.000 1.000 1.000 0.32 0.32
KP 0.944 0.944 0.000 1.000 1.000 1.000 0.33 0.33
RS 0.951 0.951 0.000 1.000 1.000 1.000 0.24 0.24
mean 0.958 0.958 0.000 1.000 1.000 0.28 0.28
median 0.959 0.959 0.000 1.000 1.000 0.28 0.28

b ¼ �bj
MC 0.907 0.946 0.039 0.000 1.000 0.718 0.36 0.27
SR 0.860 0.914 0.054 0.000 1.000 0.682 0.53 0.39
KP 0.869 0.952 0.083 0.000 1.000 0.624 0.45 0.30
RS 0.905 0.952 0.048 0.000 1.000 0.712 0.40 0.30
mean 0.885 0.941 0.056 1.000 0.684 0.43 0.32
median 0.887 0.949 0.051 1.000 0.697 0.42 0.30

bn ¼ b=
MC 0.967 0.967 0.000 1.000 1.000 1.000 0.25 0.25
SR 0.949 0.949 0.000 1.000 1.000 1.000 0.35 0.35
KP 0.938 0.938 0.000 1.000 1.000 1.000 0.41 0.41
RS 0.966 0.966 0.000 1.000 1.000 1.000 0.30 0.30
mean 0.955 0.955 0.000 1.000 1.000 0.33 0.33
median 0.958 0.958 0.000 1.000 1.000 0.33 0.33

bn ¼ �b=
MC 0.883 0.883 0.000 1.000 1.000 1.000 0.41 0.41
SR 0.834 0.898 0.064 0.000 0.193 0.338 0.24 0.39
KP 0.891 0.943 0.053 0.000 0.059 0.209 0.02 0.20
RS 0.837 0.906 0.069 0.000 1.000 0.689 0.46 0.32
mean 0.861 0.907 0.047 0.563 0.559 0.28 0.33
median 0.860 0.902 0.058 0.596 0.514 0.32 0.36
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Table 2 (continued)

normalized log likelihood improvement from 1D to
2D

chord length/arc length uncertainty r

1D 2D DNLL p 1D 2D 1D 2D

hy ¼ hp
MC 0.960 0.960 0.000 1.000 1.000 1.000 0.38 0.38
SR 0.870 0.870 0.000 1.000 1.000 1.000 0.74 0.74
KP 0.858 0.905 0.047 0.000 1.000 0.707 0.78 0.61
RS 0.853 0.902 0.049 0.000 1.000 0.706 0.77 0.59
mean 0.885 0.909 0.024 1.000 0.853 0.67 0.58
median 0.864 0.903 0.023 1.000 0.854 0.75 0.60

hy ¼ �hp
MC 0.357 0.402 0.045 0.000 1.000 0.592 1.50 0.96
SR 0.561 0.572 0.010 0.692 0.027 0.030 0.20 0.35
KP 0.573 0.632 0.060 0.105 0.146 0.316 0.38 1.87
RS 0.317 0.330 0.013 0.892 1.000 0.798 8.06 6.79
mean 0.452 0.484 0.032 0.543 0.434 2.53 2.49
median 0.459 0.487 0.029 0.573 0.454 0.94 1.42

Statistical summary of multidimensional scaling of the border salience experiments. The first two columns show the normalized log likelihood for the best one-dimensional
and two-dimensional embeddings; a value of 1 indicates that the model predicts the data perfectly, while a value of 0 indicates that the model predicts the data no better than
chance. Third column (DNLL) shows the improvement in the normalized log likelihood from the one-dimensional to the two-dimensional model, and the fourth column
indicates whether the improvement is significant, via the likelihood ratio test. Chord length/arc length (columns five and six) is the ratio of the distance between the extreme
test points, and the total distance of all the segments between them; this ratio is 1 if multidimensional scaling yields a straight line (see Figs. 8 and 10). The final two columns
show the uncertainty parameter r, i.e., the subject’s uncertainty of the locations of the stimuli in the perceptual space that best accounts for the border salience judgments.
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segmentation threshold in Fig. 9C for both the on-axis and off-axis
datasets. As expected from the near-proportionality seen in Fig. 9A,
the on-axis datasets form a horizontal band (solid symbols). In
contrast, for the off-axis datasets (open symbols), r is approxi-
mately constant, so the points lie on different trajectory. Quantita-
tively, for the prediction that the ratio of r to segmentation
threshold is constant within subjects, the unexplained variance is
0.0101 for the on-axis datasets, but 0.0632 for the off-axis datasets,
a sixfold difference (p ¼ 0:0013, two-tailed F-test, with 16 and 12
degrees of freedom).

Finally, although the above analysis ignores the non-uniformity
of discrimination thresholds across the space, this non-uniformity
is in the wrong direction to account for the results of the border
salience experiment. The critical comparison is the bn ¼ �b= data-
set, since along this diagonal, systematic distortions are present in
both experiments. In the segmentation experiments (Fig. 6),
thresholds increase modestly with increasing distance from the
origin. This holds in all four subjects, as is manifest by the elonga-
tion of the magenta and lime-green contours towards the opposite-
sign corners of the domain. If the same distortion were responsible
for the trajectories in the border salience experiment (column 4 of
Fig. 11), then the perceptual distances between the peripherally-
located point pairs (between ~x2 and ~x1 or between ~x�1 and ~x�2)
should be less than the perceptual distances between the more
centrally-located point pairs – since the peripheral pairs are harder
to distinguish. But all four subjects show the opposite: the percep-
tual distances between the more peripherally-located pairs (purple
to blue, yellow to red) are several times greater than for the more
central ones (blue to green, or green to yellow).
4. Discussion

The broad aim of this work is to gain insight into how percep-
tual spaces are represented. We chose to study a perceptual space
of visual textures, rather than a more familiar, classical space such
as that of colors, because it has characteristics that are likely to be
shared by perceptual spaces in general: it has a large number of
dimensions, these dimensions are interdependent, and the dimen-
sions are not simply related to the physical aspects of the stimulus.
Within this space, we focused on a domain of textures consisting of
black and white checks, parameterized by their local correlations.
This is a 10-dimensional domain, large enough to capture the com-
plexity of a general perceptual space and inter-relationships of nat-
ural image statistics (Hermundstad et al., 2014; Tkacik, Prentice,
Victor, & Balasubramanian, 2010), but still tractable to probe
explore extensively (Victor & Conte, 2012). To analyze how this
space is represented, we examined threshold judgments (segmen-
tation thresholds) and suprathreshold judgments (border salience).
Our data show that to account for performance, two representa-
tions of the perceptual space are required.

Two independent lines of evidence lead to this conclusion. The
first line of evidence is that the error patterns associated with the
two kinds of tasks are incompatible, and thus, for these two tasks,
the computations used to read out location in the stimulus domain
must be different. If it were the case that judgments of segmenta-
tion thresholds and border salience were based on the same
representation, then there should be a close relationship between
performance on the two tasks. Specifically, the uncertainty in
judging border salience in any direction of the texture space (the
parameter r, Eq. (2)) should be proportional to the discrimination
threshold in that direction, since both depend on the accuracy of
locating a stimulus in the perceptual space. Fig. 9 shows that this
is not the case. Proportionality holds for the on-axis test directions
(panel A), but the relationship breaks down in the off-axis
directions (panel B). Consequently, the uncertainties determined
from the two tasks do not obey a consistent relationship (panel
C). However, while this discordance is readily quantifiable (a
sixfold difference in variance explained between on-axis and
off-axis directions, p < 0:002 via F-test), it gives no hint of the
strategies employed to construct these representations or to read
the distances out.

The second line of evidence is qualitative and only suggestive,
but points to hypotheses for these strategies. The starting point
is the observation that representing the stimulus space by brute
force (e.g., with each distinguishable texture represented by its
own set of neurons) is very demanding. We then recognize that
there are two classes of combinatorial strategies that reduce the
burden: a strategy that makes use of coordinates, and a
distributed-representation strategy that does not. The
coordinate-based approach readily accounts for the key features
of the segmentation-threshold experiments, while the distributed
strategy readily accounts for the key features of the border-
salience experiments. We cannot rule out the possibility that the



Fig. 9. Comparison of thresholds determined from the segmentation task (abscissa) with uncertainties r (2D fit, Table 2) determined from the border salience task. Panel A:
Data from the five on-axis experiments (c;b ;bn; hy ;a). The four points for each image statistic correspond to data from the four subjects. Panel B: The corresponding analysis
for data in the ðb ; bjÞ and ðbn; b=Þ-planes. Square symbols: same-sign coordinates; triangular symbols: opposite-sign coordinates. Solid lines in Panels A and B are linear
regressions fit by least-squares. Regression parameters in Panels A and B are non-overlapping: slopes (and 95% confidence limits) are 0.64 (0.54 to 0.75) in A, 0.16 (�0.09 to
0.41) in B; intercepts are 0.02 (�0.04 to 0.07) in A, 0.25 (0.15 to 0.35) in B. Panel C: ratio of uncertainty r to threshold, as a function of threshold. Filled symbols from panel A,
open symbols from panel B.
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representation that underlies the segmentation-threshold experi-
ments also uses a distributed strategy. However, the coordinate
representation hypothesis is more parsimonious: it immediately
accounts for the symmetry of thresholds in positive and negative
directions, the approximate translation invariance of the isodis-
crimination contours, and their elliptical shape. Known physiology
is compatible with both strategies, and suggests a way in which the
second strategy may build on the first.
4.1. How many textures can be distinguished?

To get a concrete idea of the representation problem that the
brain has to solve, we can estimate the number of distinguishable
visual textures. We first derive a conservative estimate confined to
the stimulus space considered here, as it is can be directly linked to
the subjects’ performance on the tasks we studied. This number,
which is in the hundreds, indicates the minimal burden associated
with a brute-force representation. But it is also a gross underesti-
mate of the true burden of such a representation, since -- as we
detail below – there are many dimensions of texture that we don’t
even consider in this estimate.
To estimate the number of distinguishable textures in the pre-
sent stimulus domain, we focus on the threshold experiments.
We exploit the finding that within each plane, the isodiscrimina-
tion contours in the periphery are similar to those at the origin,
both in their shape (Figs. 4–6) and area (Table 1). Based on this,
we consider the just-noticeable-difference (JND) for each texture
coordinate to be constant throughout the plane. We choose the
JND to be equal to the measured threshold on the segmentation
task.

We can then estimate the number of distinguishable textures
within each plane by computing the plane’s area, in units of square
JND’s. This corresponds to filling the plane with a grid of points,
spaced by the JND’s along each axis, an arrangement that guaran-
tees that each point is at least one JND away from any other. For
example, to estimate the number of distinguishable textures in
the ðb�; bjÞ plane, we first set the JND equal to the common thresh-
old for b and bj (Victor et al., 2015), here denoted ab. We then note
that the ðb�; bjÞ plane itself covers the region �1 6 b 6 1 and
�1 6 bj 6 1, so it has an area of 4. Thus, in units of square JND’s,

the plane has an area of 4=ða2bÞ. For the four subjects in this study,



Fig. 10. The pattern of responses in border salience experiments in the ðbn; b=Þ-
plane. Panel A: locations of the five test points along the bn ¼ b=-line (cyan) and the
bn ¼ �b=-line (brown). Panel B: The frequency that a border between one pair of
patches was judged more salient than the border between a second pair, for test
points along the bn ¼ b=-line. Other details as in Fig. 7B. Panel C: As in Panel B, but
for test points along the bn ¼ �b=-line. For a breakdown according to individual
pairs of test points, see Supplementary Fig. 2. Subject: KP.
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the threshold ab ranged from 0.25 to 0.32, yielding estimates of 38
to 62 discriminable textures in that plane. We computed a corre-
sponding estimate for each image-statistic pair, taking into
account that in many of the planes, the domain spanned by the
two texture coordinates is less than a complete square (e.g., Fig. 4A,
see also (Victor & Conte, 2012)), and that the JND’s on each axis
may differ. We then removed the duplicate counts that arose
because the coordinate axes were each included in several planes,
by subtracting the length of each axis (in JND’s) according to the
number of extra times that it was counted. Across the four obser-
vers, this resulted in an estimate of 275 to 510 distinguishable tex-
tures within the 10-dimensional texture space.

This is a sizeable number, but nevertheless a severe underesti-
mate of the number of textures that the visual system can distin-
guish. Even within the 10-dimensional texture space that is our
focus, the estimate ignored any points that were not on the coordi-
nate planes. But much more importantly, we ignored correlations
at any scale beyond the specific check size used, and the further
texture varieties that could be produced using oblique grids, gray
levels, or colors. Thus, the actual number of distinguishable tex-
tures is likely to be much larger, probably by several orders of
magnitude.

In terms of dimensionality, previous work showed that percep-
tual thresholds within the 10-dimensional texture space required
nine independent perceptual dimensions (Victor et al., 2015). This
too is likely to be a severe underestimate of the true number of
perceptual dimensions used to encode all visual textures, as it also
ignores scale, orientation, gray level, or color – all of which entail
many further dimensions (Heeger & Bergen, 1995; Portilla &
Simoncelli, 2000; Saarela & Landy, 2012).
4.2. Avoiding a dimensional explosion with coordinates

Considering either the number or dimensionality of distinguish-
able textures, it seems unlikely that the brain uses a brute-force
strategy to represent them, i.e., individual units dedicated to dis-
tinguishable stimuli. While a brute-force strategy is a simple one,
the required resources grow exponentially with the number of per-
ceptual dimensions: if N values are to be represented along each of
D dimensions, then ND individual units are required to represent
each possible combination of values. Moreover, to allow for local
statistical information to be used for segmentation, surface identi-
fication, etc., the neural representation of this domain needs be
implemented repeatedly across visual space.

One strategy that avoids this dimensional explosion is to repre-
sent the domain in terms of coordinates. This is the strategy used
for the representation of color, at least at the level of the lateral
geniculate and primary visual cortex (Derrington et al., 1984;
Lennie, Krauskopf, & Sclar, 1990). Since each coordinate is repre-
sented independently, the resources required grow in proportion
to the number of dimensions, rather than exponentially. A coordi-
nate representation could be realized in many ways, including an
assignment of neurons to each distinguishable value along the
coordinate axis, or, in analogy with color space, via opponent
mechanisms (Derrington et al., 1984). Note also that the neural
coordinates need not be identical to the coordinates used to define
the stimulus domain, but rather, could be determined by some
embedding of the stimulus domain into the neural representation.
In all of these variations, the dimensional explosion is avoided
because the space is represented in a combinatorial fashion.

A key aspect of a coordinate representation is that the percep-
tual distance between two stimuli is determined by the differences
in coordinates that of the corresponding points. Specifically, sup-
pose that Z is the embedding of the stimulus domain into the neu-

ral coordinates (i.e., that the stimuli ~a and ~b are represented by



Fig. 11. Multidimensional scaling of border salience judgments in selected coordinate planes in off-axis directions: cyan for same-sign directions, brown for opposite-sign
directions. Other details as in Fig. 8.

20 J.D. Victor et al. / Vision Research 137 (2017) 1–23
perceptual coordinates ~A ¼ Zð~aÞ and ~B ¼ Zð~bÞ), and that f is the
function that determines distance from the embedded coordinates.
With this set-up, the perceptual distance between two points is
given by

dð~a;~bÞ ¼ f ðZð~aÞ � Zð~bÞÞ: ð4Þ

We next ask to what extent this distance formula is consistent with
experimental data. To constrain Z and f , we make use of previous
work (Victor et al., 2013, 2015). Those studies characterized percep-
tual distances near the origin of the space, by determining thresh-
olds to segment a structured texture from a random one.
Distances near the origin were found to be given by a quadratic
function of the coordinates of the stimulus domain:

dð~x;0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i:j

Q i;jxixj

s
; ð5Þ

where Qi;:j, the elements of a symmetric matrix Q , were determined
by the psychophysical data.

To use this result to test the hypothesis that the distances
between two arbitrary points in the space are given by Eq. (4),
we first recast Eq. (5) into the form of Eq. (4). This can be done with

f ð~zÞ ¼ j~zj and Zð~xÞ ¼ L~x; ð6Þ
where L is a linear transformation from the coordinates of the stim-
ulus domain to the neural that satisfies

LTL ¼ Q : ð7Þ
(The existence of such an L is guaranteed because Q is symmetric
and non-negative definite.). As is well-known(Poirson, Wandell,
Varner, & Brainard, 1990), we note that Eq. (7) only determines L
up to orthogonal transformation – but this does not bear on the pre-
dictions made by Eq. (4), since they only depend on Q:

dð~a;~bÞ ¼ f ðZð~aÞ � Zð~bÞÞ ¼ jL~a� L~bj
¼ jLð~a�~bÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLð~a�~bÞÞTLð~a�~bÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~a�~bÞTLTLð~a�~bÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~a�~bÞTQð~a�~bÞ

q
:

ð8Þ

In geometric terms, the above algebra takes the finding of
(Victor et al., 2013, 2015) – that perceptual distances are given
by the Euclidean distance in a space that is a linear transformation
of the stimulus domain – and hypothesizes that it applies not only
near the origin, but throughout the space.

If this hypothesis holds, then isodiscrimination contours at
peripherally-located reference points, as measured in the segmen-
tation experiments, should be identical in size and shape to the
isodiscrimination points at the origin. To a first approximation, this
holds. However, inspection of Figs. 4–6 show that there are sys-
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tematic differences in the peripherally-located isodiscrimination
contours, compared to the corresponding contours at the origin.
These distortions rule out the hypothesis that the embedding Z is
strictly linear, and suggest that a refinement in which it is replaced
by a nonlinear embedding that captures the distortions of the
isodiscrimation contours. Note that a globally nonlinear embed-
ding still predicts that the isodiscrimination contours will be ellip-
tical, provided that the nonlinearity is gentle enough so that in
local regions, it can be approximated by a linear embedding –but
the elliptical contours won’t all be the same size and shape.

A mildly nonlinear embedding combined with quadratic combi-
nation of perceptual coordinates also accounts for findings in other
domains – for example, the ellipsoidal isodiscrimination contours
in color space and the change in the size of these contours across
the space (Macadam, 1942; Poirson et al., 1990), and the percep-
tual combination of color and orientation cues (Saarela & Landy,
2012).

However, a mildly nonlinear embedding does not readily
account for the border salience data. The reason for the failure is
that along some directions (especially the bn ¼ �b= and hy ¼ �hp
directions), points that are at opposite ends in the stimulus domain
are perceptually closer to each other than they are to the origin
(Fig. 11). Accounting for this behavior requires an embedding of
a different character: the nonlinearity has to be sufficiently strong
so as to map opposite ends of the stimulus domain to nearby
points in the internal representation. A nonlinearity of this type
is not suggested by the threshold data, but we cannot completely
exclude it. The reason is that the points that demonstrated this
‘‘wraparound” behavior in the border salience experiments were
either too close to the edge of the stimulus domain to measure
the surrounding isodiscrimination contours (in the bn ¼ �b= case),
or directly on the edge of the space (in the case of hy ¼ �hp).
4.3. Avoiding a dimensional explosion without coordinates

While a coordinate-based representation accounts for the wrap-
around behavior seen in the border salience data only if coupled
with a strong nonlinearity, a different kind of representation will
lead to this behavior in a more natural way. Consider instead a rep-
resentation based on neurons that respond to blob-like regions of
the stimulus domain. We hypothesize that these coding regions –
essentially, ‘‘receptive fields” in the stimulus domain – are large,
blob-like, and randomly-placed, and hence overlap in a haphazard
but extensive fashion. Similarity relationships can be directly read
out from the population response without an intermediate step of
computing coordinates, or even knowing the location of each neu-
ron’s receptive field in the stimulus domain: two stimuli are simi-
lar if they induce similar patterns of population activity. Two
stimuli that correspond to nearby points will be regarded as simi-
lar, since they activate a similar pattern of neurons, and neurons
that correspond to distant points will be regarded as different,
since the pattern of activated neurons will differ. We emphasize
that the key distinction between this kind of representation and
the coordinate strategy is not whether neurons are linear vs. non-
linear, but rather, whether they have location labels that are
needed to determine perceptual distances.

This coding strategy is combinatorial because the coding
regions are large and extensively overlapping: stimulus identity
is coded by the combination of neurons whose coding regions
cover a given point in the domain. The combinatorial character
would be lacking if the coding regions were narrowly tuned and
had minimal overlap. In this case, stimulus location could be coded
by the identity of the active neuron, but the entire space would
need to be covered by separate coding regions, so the combinato-
rial advantage would be lost. This intuition is supported by theo-
retical studies: while the ability of a population of neurons to
represent the location of points within a multidimensional domain
depends on many factors, including the size of each neuron’s cod-
ing region, the extent to which these coding regions overlap, the
slopes of their tuning functions, and whether they have correlated
or uncorrelated noises (Hinton, McClelland, & Rumelhart, 1986;
Zhang & Sejnowski, 1999), broader tuning curves provide a more
efficient representation than narrow ones for spaces of dimension
three or larger (Zhang & Sejnowski, 1999). We also note that a sim-
ilar combinatorial advantage emerges in a distributed representa-
tion based on neurons with periodic coding regions at multiple
scales, as in the grid cell system (Mathis, Herz, & Stemmler,
2012; Mathis, Stemmler, & Herz, 2015).

The wraparound observed in the border salience experiments
will occur whenever there are regions near the periphery of the
stimulus space that are only sparsely covered by coding regions.
The reason for this is that stimuli placed in these sparsely-
covered regions will activate very few neurons, so all such stimuli
will appear similar to each other. This is in contrast to similar
located in densely-covered regions, which will differentially acti-
vate large numbers of neurons.

An uneven coverage of the stimulus domain studied here, with
greater resources devoted to the region near the origin, makes
sense in terms of efficient coding: the 2� 2 statistics of natural
image patches rarely populate the periphery of the space
(Hermundstad et al., 2014). This account of the curvature of the
trajectories in Fig. 11 is also consistent with more detailed aspects
of the distribution of 2� 2 natural image statistics in the planes
considered here. Specifically, the distribution of statistics of natural
image patches falls off more rapidly in the opposite-sign directions
than in the same-sign directions, consistent with the observation
that curvatures are more prominent in opposite-sign directions
than in same-sign directions (Fig. 3B of Hermundstad et al.,
2014). That analysis further shows that within the opposite-sign
directions, the fall-off of image statistics is most rapid for
hy ¼ �hp, next for bn ¼ �b=, and least for b ¼ �bj – corresponding
to the relative prominence of curvature of the trajectories in
Fig. 11. It is also notable that the distribution of values of a in nat-
ural images has a strong positive skew (Supplementary Fig. 3A of
(Hermundstad et al., 2014); Supplementary Fig. 10 of (Tkacik
et al., 2010)). The compression of the trajectories for negative val-
ues of a seen in Fig. 8 (column 5) indicates a correspondingly spar-
ser representation of the space for a < 0 compared to a > 0.

While the directions of greatest curvature correspond to the
directions in which natural image statistics fall off most rapidly,
it is unlikely that coding units are strictly distributed in proportion
to the occurrence of the corresponding image statistics in natural
images. A further analysis of the data in (Hermundstad et al.,
2014) (provided by the first author) suggests that the periphery
of the domain is over-represented, compared to the distribution
of image statistics in natural image patches. In natural image
patches, the standard deviation for the cardinal b’s (b and bj) is
< 0:12, for the diagonal b’s (bn and b=) it is < 0:08, for h it is
< 0:04, and for a it is < 0:05. A distribution of coding regions pro-
portional to the natural image distribution would not account for
the observation that the most distinguishable pair of test points
in the on-axis experiments was ~x�2 and ~x2 (Fig. 8), as these end-
points are each four or more standard deviations from the peak
of the natural image distribution.

A distributed representation based on coding regions may also
explain the relatively poor fit of Eq. (2) for the test points along
hy ¼ �hp. For these datasets, the typical relative log likelihood
was approximately 0.5 (last section of Table 2) for a two-
dimensional embedding, and there was no improvement with a
higher-dimensional embedding. This lack of improvement indi-
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cates that the perceptual distances are inconsistent with a Eucli-
dean distance, no matter how the stimulus coordinates are trans-
formed. However, distributed representations allow for non-
Euclidean distances: the difference in the patterns of population
activity need not be computed in a quadratic fashion. For example,
the distance may correspond to the sum of the differences in firing
rates, rather than the square root of the sum of the squares. Com-
parisons of multineuronal activity patterns based on spike timing
are also typically non-Euclidean (Aronov & Victor, 2004).

Finally, independent of the evidence from the analysis of error
patterns (Fig. 9), there are additional reasons that a single dis-
tributed representation is unlikely to account for both the segmen-
tation thresholds and border salience. First, in order for this kind of
representation to account for the near-uniformity of the isodis-
crimination contours, coding regions would need to be distributed
approximately uniformly throughout the space, implying extensive
allocation of resources to image statistics that are very rare in nat-
ural images. Further evidence against a common representation
emerges from a direct comparison of the two tasks carried out in
the planes of the second-order statistics ðb ; bjÞ and ðbn; b=Þ. We
focus on the behavior in the neighborhood of the intermediate test
points (~x�1 and~x1) used in the border salience task along the differ-
ence direction; these are at locations ð�0:25;
0:25Þ. The border
salience experiments (Fig. 11, second and fourth columns) showed
that the perceptual distances from each of these points to the cor-
responding extreme point (i.e.,. from ~x1 (blue) to ~x2 (purple), or
from~x�1 (yellow) to~x�2 (red)) were typically more than twice their
perceptual distances to the origin (~x0, green). If threshold
judgments were based on the same representation, thresholds
should be about half as large for steps away from the origin,
compared to steps towards it. However, direct measurements of
threshold at peripheral locations (ðb ; bjÞ ¼ ð�0:6;
0:6Þ and
ðbn; b=Þ ¼ ð�0:35;
0:35Þ) show no corresponding asymmetry
(Figs. 5 and 6; Table 1) – there is either no asymmetry at all, or a
mild asymmetry in the wrong direction (a larger threshold when
moving away from the origin, than towards it). In sum, the asym-
metries seen in the border salience task are inconsistent with the
near-constancy of the isodiscrimation contours obtained in the
threshold experiments.
4.4. Physiological implications

What plausible neural mechanisms could account for our find-
ings? Recordings in macaque V1 and V2 (Yu, Schmid, & Victor,
2015; Victor et al., 2015) under anesthesia identify neurons sensi-
tive to local image statistics of all orders in both regions, with V2
containing a much larger proportion of neurons sensitive to
third- and fourth-order statistics. In both V1 and V2, responses
depended on the value of an image statistic in a monotonic though
often nonlinear fashion (Victor et al., 2015). These neurons, while
not providing strictly linear coordinates, may nevertheless form
the substrate of a coordinate representation. Individual neurons
tended to respond to more than one image statistic, and their
responses were not restricted to a specific set of coordinate axes,
suggesting that the representation is overcomplete. These features
are shared by the representation of color space in V1: neurons typ-
ically respond in a partially rectified manner to modulations along
a preferred axis in color space, and across the population, these
preferred axes are not restricted to a set of cardinal axes (Lennie
et al., 1990).

On the other hand, neurons whose activity could account for the
border salience findings need to have responses that depend on
stimulus coordinates in a non-monotonic fashion. A monotonic
relationship to the domain coordinates is ruled out because in that
case, the perceptual distances between two points would grow
monotonically as a function of their distance along the coordinate
axes – the opposite of what is observed (Fig. 11: along the bn ¼ �b=

and hy ¼ �hp -lines). In the context of a coding-region representa-
tion, non-monotonicity is also required, because the neuron’s
response is maximal for stimuli that lie within this ‘‘coding region”,
and falls off to small values for stimuli that are outside of it. How-
ever, neurons with non-monotonic responses were rarely identi-
fied in the above studies. We hypothesize that non-monotonicity
could emerge by combining the outputs of neurons with mono-
tonic responses – either by a nonlinear interaction, or simply by
subtracting the output of neurons whose response functions have
different shapes. In this scenario, even though the neural basis
for threshold and suprathreshold judgments are distinct, they
share common building blocks. Interestingly, non-monotonic neu-
ronal response functions, and an analogous patch-like representa-
tion of color space, have been observed in macaque inferotemporal
cortex (Komatsu, Ideura, Kaji, & Yamane, 1992).

While there appear to be a number of parallels between image
statistics and color, it is worth noting that there are a number of
important differences, beyond just differences in dimensionality.
The stimulus domains are fundamentally different: for color, the
space is affine, i.e., there is no a priori notion of a distance (Zaidi
et al., 2013); for image statistics, information-theoretic
considerations give the space an intrinsic metrical structure
(Victor & Conte, 2012). For color, the parameters of the perceptual
space are extracted by the photoreceptors and determined by the
spectra of photopigments, while for image statistics, they are
extracted at many levels of processing and determined by the com-
putational characteristics of neural circuitry. Finally, the partition-
ing of color space into categories or regions with specific names,
and the likely substrate of this partitioning in neural processing
(Komatsu, 1998; Komatsu et al., 1992), have no obvious analogy
for image statistics.
5. Conclusions

Representing a perceptual space by brute force requires
resources that grow exponentially with the number of dimensions.
Representations based on coordinate axes or coding regions avoid
this exponential growth because they are essentially combinato-
rial. The present data indicate that for image statistics, there are
separate representations that support segmentation tasks near
threshold, and suprathreshold comparisons. The former has char-
acteristics suggestive of a coordinate-based representation, while
the latter has characteristics suggestive of a representation in
terms of coding regions. There is evidence that similar strategies
are used for color – leading to the speculation that they are used
more generally for the representation of complex, multidimen-
sional perceptual spaces. How these representations are interro-
gated in a task-dependent fashion, and how they are
implemented in neural circuitry, remain for future work.
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