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ABSTRACT A method is developed for the analysis of nonlinear biological systems based on an
input temporal signal that consists of a sum of a large number of sinusoids. Nonlinear
properties of the system are manifest by responses at harmonics and intermodulation.
frequencies of the input frequencies. The frequency kernels derived from these nonlinear
responses are similar to the Fourier transforms of the Wiener kernels. Guidelines for the choice
of useful input frequency sets, and examples satisfying these guidelines, are given. A practical
algorithm for varying the relative phases of the input sinusoids to separate high-order
interactions is presented. The utility of this technique is demonstrated with data obtained from
a cat retinal ganglion cell of the Y type. For a high spatial frequency grating, the entire
response is contained in the even-order nonlinear components. Even at low contrast, fourth-
order components are detectable. This suggests the presence of an essential nonlinearity in the
functional pathway of the Y cell, with its singularity at zero contrast.

INTRODUCTION

Linear systems analysis is an analytical tool that can help test models of the internal structure
of a biological system. It has been particularly useful in neurophysiology (Rodieck and Stone,
1965; Maffei et al., 1970; Ratliff et al., 1974). However, linear systems analysis applies only
to systems that are linear, or very nearly linear. In some instances, for example the Limulus
retina, the assumption of linearity is a good one (Dodge et al., 1970; Ratliff et al., 1974). In
other cases, it is apparent that linearity is only an approximation (Rodieck and Stone, 1965;
Mgller, 1973; Marmarelis and Naka, 1973; Krausz and Friesen, 1977). Furthermore, we now
know that there are important transductions in the vertebrate retina, which are essentially
nonlinear (Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 1976a.b). Therefore, we
expect that nonlinear systems analysis will be necessary for the study of many biological
transductions.

We have studied the neural network in the cat retina by analyzing the response of ganglion
cells to spatio-temporal patterns of light. We have developed a novel method of nonlinear
analysis that has been used to probe the internal structure of this network (Victor et al., 1977).
The crux of this method is the use of a modulation signal that is a sum of sine waves and the
measurement of the nonlinear response of the system as cross-talk between the input
frequencies. The purpose of this paper is to describe the method, and to compare it with other
methods of nonlinear analysis. A rigorous formulation of the method of frequency kernels is
given in a separate paper (Victor and Knight, 1979), in a more general theoretical setting.
Applications of the frequency kernel method to retinal physiology are offered in Section 2 of
the present paper.

One important method for nonlinear systems analysis derives from the work of Wiener
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(1958), who proposed that an arbitrary transducer could be characterized by its response to
Gaussian white noise. In principle, the Wiener kernels, which describe the transducer’s
response to the white noise input, enable one to predict the response of the system to any input.
In practice it is more significant that the Wiener kernels of certain simple models of nonlinear
systems have simple analytic forms. This allows one to test hypotheses for the internal
structure of a system by comparing its Wiener kernels with those of models.

There are major problems with the experimental implementation of Wiener’s theory. The
difficulties of Wiener analysis stem from the difficulty in producing an adequate Gaussian
noise. In certain nonlinear systems, such as the retina, small deviations of the input noise from
ideal Gaussian noise may make experimentally determined kernels useless for the testing of
models.

As an alternative to Gaussian noise, we chose to use a deterministic input: a sum of several
sinusoids. The proper choice of the component frequencies is essential if our procedure is to
work, as will be discussed below. With such an input, Fourier analysis can be used to perform
nearly all of the labor of measurement of kernels from experimental data. The narrow-band
filtering provided by Fourier analysis enhances the signal-to-noise ratio. It may be shown
(Victor and Knight, 1979) that the kernels obtained with this method are good approxima-
tions to the Fourier transform of the classical Wiener kernels. Thus, we are able to retain the
advantage of classical Wiener analysis mentioned above, namely that the kernels of some
simple systems have simple analytic forms. Indeed, these analytic forms are often simpler in
the frequency domain.

Given the myriad approaches to nonlinear systems analysis, we felt that it might help the
reader to state explicitly how our approach differs from the methods of others. This procedure
is not simply white noise analysis in the frequency domain (e.g., French, 1976), because we
use a deterministic input signal. Our sum-of-sinusoids method is not like the harmonic input
method of Bedrosian and Rice (1971), which is restricted to the small signal regime of
analytic systems, nor like the work of Young and Stark (1963) and St.-Cyr and Fender
(1969), who did not consider nonlinear terms. The sum-of-sinusoids approach is different
from the use of a single sinusoid because, in the analysis of a nonlinear system, the response to
a sum of sinusoids contains a richer class of nonlinear interaction terms. Finally, our work is
not an attempt at an exhaustive characterization of the system under study, but rather an
attempt to extract information from the response of the system which allows us to develop
models of its behavior.

In the first section of this paper, we describe the method of nonlinear analysis in the
frequency domain. In the second section, we present frequency kernels obtained from cat
retinal ganglion cells (Y type) which show that the retina is a highly nonlinear system. Thus,
the development of experimental techniques that can deal with highly nonlinear systems is
necessary for comprehending the function of the retina.

SECTION I: NONLINEAR ANALYSIS

A fruitful use of nonlinear analysis is the testing of hypotheses for the internal structure of a
nonlinear system. It is often useful to think of two kinds of basic building blocks for such
models: static nonlinear components, and dynamic linear components. First we will consider
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how to identify the type of nonlinearity in a static nonlinear system. Then we will consider
nonlinear systems with dynamic components.

Any system takes an input & and transforms it into an output signal &. Usually & and R
are functions of time §(¢) and R(¢). In this paper we will consider only “stationary” systems,
whose input-output relations do not depend on absolute time. A static system is one in which
the output R depends only on the instantaneous value of the input &, and not on the past
history of §. For example, we can write the input-output relation of a static linear system as
R = k8. An example of a static nonlinearity is a square-law device whose input-output
relation can be written & = k,8°. Because in static systems R is a function f(§), one can
characterize the nonlinearity of the system by analyzing the transducer function f. If f is
analytic at § = 0, R can be written as a Taylor series in ascending powers of &, i.e., B = Z;_,
[f"(0)/n']S$". For nonlinearities of the polynomial type, this power series terminates at some
finite power. One may speak of this power as the order of the nonlinearity. For example, a
nonlinearity of third order is one in which there are some terms involving §* = § - § - & but
no higher powers. Some transcendental functions may be approximated well by second- or
third-order polynomial systems. For example, log,(1 + &) = & — (§/2) + (£°/3),s0 a
logarithmic nonlinearity may be treated as a polynomial for small inputs. This approximation
of static nonlinear systems by a Taylor series cannot work for transducer functions with
discontinous derivatives, such as that of a half-wave rectifier for which & = k(& + | &|).

Orthogonal Polynomials

Orthogonal polynomial series can be used to approximate functions with continuous or
discontinuous derivatives, and thus can be used to approximate functions that have no Taylor
expansion. Orthogonal polynomials are a set of polynomials {po(S), pi(&) ... p(S), ...}
satisfying the orthogonality conditions:

L pu 0SS 48 =0,  m = n,

b
L pu P EIW(S) dS = ki (1)

The weight function w(§) determines how significant each of the values of the function to be
approximated is. A very large class of nonlinear transducer functions f(§) can be approxi-
mated by a sum of orthogonal polymonials:

f($) =2 cp(S). @)
i=0
One can show that this approximation is the least-squares best fit, given the weight w(§).

Because the polynomials are orthogonal one can use the following integral to sift the
appropriate coefficients, c;:

1
‘i L r@wpisms) as. )

This procedure makes sense even for functions for which the Taylor series expansion fails
(nonanalytic functions). One very useful set of orthogonal polynomials is a set for which the
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interval of integration is —e < & < o, and the weight function is the Gaussian distribution of
variance 2,

w(S) = exp (—&?/2P). (4)

™
Such orthogonal polynomials can be used to approximate functions over the entire real line.
These polynomials are the Hermite polynomials. The first few Hermite polynomials are 1, &,
&2 — P. The order of a particular Hermite polynomial may be defined as the highest power in
the polynomial, e.g., the second-order Hermite polynomial is H,(8) = §* — P.

Two examples may help to clarify what one may learn from the approximation of nonlinear
transducer functions by Hermite polynomials. In Fig. 1 the transducer functions for a
full-wave rectifier and for a comparator are shown, together with Hermite polynomial fits to
second, fourth, sixth, and twentieth order in the case of the rectifier, and first, third, fifth, and
nineteenth order in the case of the comparator. The orthogonal polynomials of low order are
clearly poor characterizations of these nonlinear functions. The approximation improves when
many orders are included. However, this should not be taken as a counsel of despair if one is
interested in mechanistic models. That a low-order polynomial fit fails suggests that a “good”
model should include an element with a discontinuity (or discontinuous derivative).

To prepare for what is to come later, we would like to point out that the theory of Wiener
kernels is an extension of the orthogonal polynomial theory (Barrett, 1963). The Wiener
theory applies to nonlinear systems that are not static—systems in which the output is
influenced by the past. In this dynamic case, one requires more than orthogonal polynomials.
Rather, the terms in the orthogonal expansion must be functionals, which are sums of
convolution-type integrals. These integrals involve the input and the time dependences of the
linear and nonlinear interactions. In spite of the added complexity, the general strategy is the
same as in the static case. The Wiener functionals are designed to be a least-squares best fit up
to the order of the interaction that they represent. For example, the functional derived from
the first-order Wiener kernel of a given transducer is the linear transducer whose output is the
best approximation of the output of the given transducer. In this context, the goodness of the
approximation is measured by the average of the squared discrepancies between the outputs of
the approximating transducer and the given transducer when the input signal is Gaussian
white noise.

Each functional of the Wiener expansion is orthogonal to all other functionals. Orthogonal
functionals have uncorrelated outputs when the input signal is Gaussian white noise. (“Un-
correlated” means ‘“uncorrelated by the product-moment statistic ((x — (x))(y — {y})).”)
Because the Wiener theory is built around the use of Gaussian noise as input, the Wiener
expansion is closely analogous to a Hermite polynomial expansion. In fact, the Wiener
expansion reduces to a sum of Hermite polynomials in the static case. One can calculate the
kernels of the Wiener functionals for several useful models (see Appendix B). We wanted to
preserve this feature of the Wiener theory while avoiding Gaussian white noise as a test signal.
Therefore, we turned to a sum of sinusoids as an input signal.

The correlation properties of the sum of sinusoids approach those of Gaussian noise as the
number of sinusoids increases. This is a consequence of the central-limit theorem. An
empirical demonstration that the distribution of the amplitudes of the sum of sinusoids
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FIGURE 1 Approximation of two nonanalytic static nonlinearities by a finite sum of Hermite polyno-
mials. In (A4), approximations to the function R = I&I by second- , fourth- , sixth-, and twentieth-order
polynomials are shown. In (B), the function R = sgné& is approximated by first-, third-, fifth-, and

nineteenth-order polynomials.
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FIGURE 2 The distribution of input levels in a signal composed of Q sinusoids of equal amplitude. Notice
that this distribution is very nearly Gaussian for Q = 6.

FIGURE 3 The construction of the input signal composed of a sum of the eight sinusoids of frequency set 5
of Table Al. The segment shown is approximately one sixth of the total stimulus.

approaches a Gaussian is given in Fig. 2. In our experimental work we have typically used a
sum of eight sinusoids; the input signal is shown in Fig. 3.

Characterization by a Sum of Sinusoids

To conclude this discussion of the characterization of static nonlinearities, we will discuss
what happens if one presents a sum of sine waves as an input to static linear and nonlinear
systems. Static nonlinearities generate harmonics and combination frequencies in response to
the sum of sinusoids (cf. Bedrosian and Rice, 1971).

Suppose we use as an input signal the sum of Q cosine waves with distinct frequencies f;, f5,
..., foand all at amplitude a. Thus the input signal is

0
s(t) =a Z cos 2xf;t. (5)

Jj=1

We will call f,, ..., f, the fundamental frequencies. The simplest static system is a static
linear system where the response R,(t) = k,&8(¢) for any input signal §(¢). The response of
the static linear system to the sum of sinusoids will be

[
R.(t) = kja Z cos 2xf;t. (6)
j=1

Fourier analysis of this output yields components only at the fundamental frequencies

So-oi fo

Next, consider a simple static nonlinear system in which the response at each time will be a
function only of the present input level, but a nonlinear function, say, R,(t) = k,&(t) +
k,$*(t). Then R,(¢) for an input that is the same sum of sinusoids as before will be
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[ [}
Ry(t) = kya ) _ cos 2xfit + kya* )_ ) cos (2xfit) cos 2fyt)

j=1 k=1 21
[
= R, (t) + kya* - 2 + lZ:cos Q7 - 2fit)
2 25
1o 2 1 2.2
+—ZZcos21r(fk +fg)t+—ZZcos21r(fk—ﬁ)t]. @)
2k-| 4 2k-l =1

~—

2 2%k
If one Fourier-analyzes the response of this system, one obtains Fourier components at the
fundamental frequencies, f,, . . ., fp, and also components at the second harmonic frequencies
2fi - - - » 2fy, and also components at the sum frequencies f; + fo, fi + f3, ... fi + fo. o + f3
coosSo+ for - - - fo-1 + fo, and also components at the difference frequencies f; — f;, .. .,
Jo-1 — fo- The terms 2f, are the second harmonics and the f; + f; terms are intermodulation or
cross-talk frequencies. A nonlinearity of second order, the quadratic term, will produce
frequency components involving the pairwise combination of frequencies. The generalization
to higher-order nonlinearities is straightforward. For example, a cubic nonlinearity operating
on the sum of sinusoids will produce harmonic and intermodulation terms with frequencies
that are the result of additive or subtractive combination of three fundamental frequencies,
St fo S

There is a simple reason why nonlinearities generate sinusoidal components with frequen-
cies that are additive combinations of the fundamentals. The sinusoids can be expressed as a
sum of a complex exponential and its conjugate, cos § = (1/2)(e” + e ™). An nth order
nonlinearity multiplies the input by itself n times to generate part of the output. Multiplication
of a sum of complex exponentials by itself n times will generate a sum of complex
exponentials, in which some of the exponents are the sum of n exponents of the fundamentals.

Dynamic Nonlinear Systems

We now consider nonlinear transducers whose instantaneous output depends on the past, as
well as the present, input. The sum-of-sinusoids signal immediately suggests the use of
analysis in the frequency domain.

We have shown above that in a static linear system the Fourier components in the output
are just at the frequencies present in the input, while in a static second-order nonlinear system
there are Fourier components at the input frequencies and at the pairwise combination
frequencies. These results also apply to dynamic nonlinear systems (see, for example, Eq. 19
below). In this case there is the important difference that the relative amplitudes and phases
of the Fourier components depend on the dynamics of the system. Nevertheless, linear
responses occur at the input frequencies, and nonlinear responses at combination frequencies
of a given order.

This immediately gives an orthogonal series characterization of the responses of an
arbitrary nonlinear system. The first term in the series is the sum of sinusoids at the input
frequencies weighted by a first-order frequency kernel, the second term in the series is the sum
of all sinusoids at pairwise combination frequencies weighted by the second-order frequency
kernel, and so on. The nth-order frequency kernel is just the set of Fourier coefficients of the
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responses at the nth-order combination frequencies. The first-order frequency kernel K,( f)) is
formally defined as

Ki(f) =2(r(@®) exp [-iQ2nfit + $)1). fi=fi1, .- . So (®)

where f; is one of the input frequencies, 7(¢) is the response of the system, ¢, is the phase at
time zero of the sinusoid at frequency f;, and ( ) denotes averaging over time. If the
frequencies in the sinusoidal sum are all integer multiples of a single frequency, then the
stimulus s(¢) (as in Eq. 5) is periodic, and the time average may be taken over only one repeat
period. If the frequencies of the sinusoids in s(¢) are incommensurate, the time average must
be taken over an indefinitely long time.

The second-order frequency kernel is defined as a function of a pair of frequencies in the
input. Thus,

Ko (fi fi) = 2 {r(@) exp [—iQa(f; + f)t + &; + 0] ). f; # fu (%a)
K (f;, f;) = 4 (r(1) exp [-i2x(2f))t + 2¢))]). (9b)

Again, ( ) denotes averaging over time. There is an additional factor of 2 at the points ( f;, f;)
for combinatorial reasons. For completeness, we also define a zeroth-order kernel

Ky = (r(?)). (10)

For these definitions to be practical, it is necessary that the Q* + Q first- and second-order
frequencies be distinct. If the input frequencies are all multiples of a common fundamental,
one also must minimize the amount of high-order overlap onto low-order frequencies. These
constraints are satisfied by the frequency sets of Table I and the phase averaging procedure of
Appendix A.

Frequency Kernels of a Dynamic Linear System

A linear system, by definition, obeys the law of superposition. An arbitrary input signal may
be thought of as a sum of very narrow pulses, each at a separate instant in time. Therefore, a
linear system is completely determined by its impulse response, because its response to a sum
of pulses is the sum of its impulse responses. The impulse response p,(r,) describes the
time-course of the response to a unit narrow pulse; it also describes the response at time # to a

TABLE 1
A LIST OF FREQUENCY SETS THAT GENERATE SUM-OF-SINUSOID SIGNALS SUITABLE
FOR THE ANALYSES OF NONLINEAR SYSTEMS BY THE FREQUENCY KERNEL METHOD

Set No. of Formula Frequencies
frequencies (as multiples of the fundamental)

1 6 empirical 41,71, 161, 351, 801, 1401
2 6 empirical 21, 36, 81, 176, 401, 701
3 6 empirical 29, 50, 113, 246, 561, 981
4 8 empirical 55,79, 131, 195, 295, 463, 691, 1055
5 8 4.2/ -1 7,15, 31, 63, 127, 255, 511, 1023
6 8 8.2/ -1 15, 31, 63, 127, 255, 511, 1023, 2047
7 8 12.1/-5 19, 43,91, 187, 379, 763, 1531, 3067
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pulse applied 7, seconds previously. Thus one can express the response R(?) to any stimulus
&(2) as the sum of the values of the stimulus weighted by the impulse-response:

R = 786 = rm(r) dr,. (11)

Suppose we want to determine the system’s response to the sum of sinusoids. For ease in
calculating Fourier transforms we reexpress the sum of sinusoids as a sum of complex
exponentials. Thus, for a sum of Q sinusoids

Q 1 &

s(t) = ZI a;cos (2nf;it + ¢;) = 3 .ZQ a;exp [iQ2nfit + ¢;)], (12)
Jj- j=-

where f_;= —f,a_;=a,and¢_;= —¢;forj=1,..., Qand where we set a,, f,, and ¢, all to

zero. To obtain the frequency kernels, substitute expression (12) for s(¢) into the input-output

relation (11). The result is 7(2), the response of the system to the sum of sinusoids:

(4

r() =% Qaj exp [i(—-2xf;t + ¢;)] - [j)‘m exp (—2wif;m)py (7)) dy |- (13)

j..-

Note that the expression in square brackets on the right hand side of Eq. 13 is the transfer
function of the linear system, g,(F). The transfer function is the Fourier transform of the
impulse response:

g (F)= ./0.m exp (—2@iFr)u,(7) dr. (14)

Each value of the transfer function, g,(F), is a complex number. The magnitude of g,(F) is
the ratio of the amplitude of an output sinusoid at a frequency F to that of an input sinusoid at
a frequency F. The phase of g,(F) is the phase shift between an output sinusoid at a frequency
F and an input sinusoid at a frequency F.

Using the transfer function, g;, we may rewrite the response of a linear system to a sum of
sinusoids (Eq. 12) as follows:

1 & ,
0 =5 2 agi(f) exp liQnfit + ¢))]- (15)
j=-Q
Now we are ready to calculate the frequency kernels of a linear system by substituting the
expression for the response of the system to a sum of sinusoids (Eq. 15) into the definitions of
the frequency kernels (Eqgs. 8 and 9). The results are:

K.(f) = ajgl(fj) (16a)
Kz(i.f}5.f;c) =0
K (f.f) =0.

For a linear system the first-order frequency kernel is essentially the transfer function, and the
second-order frequency kernel is zero.

This means that for a linear system, a sum of Q sinusoids can be used to measure points on
the transfer function at Q separate frequencies simultaneously (Young and Stark, 1963;
Dallos and Jones, 1963; St.-Cyr and Fender, 1969; Victor et al., 1977; Brodie et al., 1978).

(16b)
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Frequency Kernels of Second-Order Nonlinear Systems

The great utility of the sum-of-sinusoids signal becomes evident when the system is not linear.
Consider a very restricted class of nonlinear systems: systems that contain at most second-
order interactions. We will use the functional power series of Volterra (1930) to calculate the
response to a sum of sinusoids. As before, we consider the input signal to be a superposition of
very narrow pulses of varying heights. The response of the system at time ¢ has a component
due to the pulse 7, seconds earlier, at time ¢z — 7,. This contribution is determined by the value
of the impulse-response function (or first-order Volterra kernel) of the linear part of the
system, u,(7,). However, because the system is not linear, the total response at time ¢ is not
simply the sum of all of these contributions for all past times. For example, two pulses at times
t — r,and t — 7, may be multiplied to produce an additional component in the response. In a
second-order nonlinear system, there are at worst such pairwise products. The size of this
interaction depends on the two time intervals 7, and 7,. This dependence is given by the
second-order Volterra kernel u,(7,, 7,). Which time is considered the first time is arbitrary;
thus, we must assume p, is symmetric in its arguments: u,(7,, 7,) = (75, 7;). The contribution
to the response from an interaction between input levels at two times in the past is given by the
product of the input levels at those two times and u,(7), 7,).

To include these contributions, we add to the input-output relation (Eq. 11) an additional
term that consists of the contributions of all pairwise interactions at two previous times. To
determine the input-output relation for a general second-order system, we also include an
offset term, p,, which is the steady output of the system when the input is zero. Thus, the full
input-output relationship for a second-order nonlinear system is:

R = o+ ) 8 — 1w () o,

+ ./o.m ./;m St — 1) — 1)pa(ry, 1) drydry. (A7)

We next proceed to calculate the response of this system to the sum of sinusoids (Eq. 12).
To express the result, we will need a second-order analogue of the transfer function. It is the
Fourier transform of the function u,, and is thus a function of two frequencies, g,(F,, F,) (cf.
Bedrosian and Rice, 1971):

&(F\, F)) = ‘/O-w ./o‘m exp [—2wi(F\7; + Fy73)]pa(71, 7,) d7y d73. (18)

The function g, is defined for negative frequencies, and the form of Eq. 18 implies that negating the
arguments of g, makes it equal its complex conjugate; thus, g,(—F,, —F,) = g(F,, F,). But there is
an additional identity that g, obeys. Because p, is symmetric in its arguments, so is g,. Thus,
&:(F\, F,) = g Fo, Fy).

The response of the general second-order nonlinear system described by Eq. 17 to the sum-
of-sinusoids signal (Eq. 12) may be determined by direct substitution of Eq. 12 into Eq. 17. The result
is:

]
MO o+ 3 Y am(f) exp st + 4]

Q Q
> > aag(fiufi) explil2a(f; + f)t + ¢ + oell. (19)

j=—Q k=—0

+

|-
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By inspecting the last part of Eq. 19, we see that many different frequencies are present in the
output. There are components at the fundamental frequencies f;. But most of the sinusoidal
components in the output do not correspond to single frequencies in the input. Just as in the
static case (Eq. 7), they correspond to pairs of frequencies in the input. Pairwise interactions
in the time domain have manifested themselves as pairwise sums (or differences) of the
fundamental frequencies.

At each of the LQ(Q — 1) frequencies, f; + f; (here, j > k > 0), there is a component whose
amplitude is equal to the amplitude | g,( £, £;) I,times the product of the relevant input amplitudes, a;a;.
The phase shift of this component is equal to the sum of the input phase shifts ¢; + ¢, and the phase shift
due to the interaction, arg [g,( f;, fi)]. (For any complex number z # 0, arg(z) is the angle in radians
from the real axis to the point z on the complex plane.) Similarly, at each of the 12Q(Q — 1) difference
frequencies f; — fy(j > k > 0), there is an output component with an amplitude ajakI &(f, —f)|anda
phase shift arg [g,( f;, —fi)] + ¢; — ¢x. Furthermore, at each of the Q pure second harmonic frequencies
2f;, there is an output component with an amplitude '/zafl (i f) | and a phase shift arg [g,( L1+
2¢;. (The factor of '; in the amplitude arises when the two frequencies are equal, because there is only
one term in the final sum of Eq. 19 with an exponent involving f; + f;. When the frequencies are distinct,
there is a term for f; + f; and a separate term for f; + f;.)

For a second-order nonlinear system, as with a linear system, the frequency kernels may be

calculated directly. We substitute the expression (19) for the response r(z) of such a system
into the definitions (8—10), and obtain

KZ(/}aﬁ() = ajakgz(.f/‘wf;:)’ (203)
Kl(fj) = ajgl(fj), (20b)

[
Ko= 80+ 52 dailfiuf ). (200

j=1

Here we have made the replacement g, = uo, which is the steady output when no input is
present.

For second-order systems, the frequency kernels are related to the Volterra kernels as
Fourier transforms, and provide an equivalently precise description of the system’s response to
arbitrary inputs.

General Nonlinear Systems

Now we will consider systems with interactions of order higher than two. There are
mathematical complications that arise when one is investigating an arbitrary nonlinear
system, and in general they cannot be ignored (cf. Victor and Knight, 1979). This is not an
academic problem; certain retinal cells have highly nonlinear properties (see Section 2). In
general it is not true that the frequency kernels are identical to Fourier transforms of the
Volterra kernels.

The source of the complications first appears when we compute the first-order frequency
kernel for a system with third-order interactions. The input-output relation for such a system
is the natural extension of Eq. 17. We simply add a term describing the contribution to the
output due to interaction of the input levels at three previous times. This interaction is
described by the third-order Volterra kernel u;(7,, 75, 7,). Thus the input-output relation is
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RW) = o+ J "8 = rw(ry) dr,
w7786 = 786 - (e, ) dry dr,

o L7780 - )86 - )8 = us(r, oy m) dry drdr. (21)

We introduce g;(F,, F,, F3), the Fourier transform of u;(7,, 75, 73):

&(F,, F,, F;) = ,/(;m ,/(;m,/(;mc"P [=2mi(F\7, + Fy7y + Fi713)]
« u3(1y, 72, 73) dry d7ydr;. (22)

The procedure for calculation of K, involves determining the response r(z) to the stimulus s(¢)
by Eq. 21, and substituting this expression in the definition (Eq. 8) of K, using the identity
(e™)y = {#/%0. The algebra is straightforward and the result is

2 3
Kl(f;‘) = ajgl(fj) + %aj kZ alzth(j}sﬁc’f—k) + 2 a}gs(j},fpf_j)- (23)

k#j

When we recall that K,(f)) is essentially the component of the output at the input
frequency f;, the problem that Eq. 23 presents becomes clear. This output component, which
we might expect to be due solely to the linear component of the system (i.e., g,[ f;]) contains
nonlinear components involving g;. A similar phenomenon may be identified in Eq. 20c, in
which we saw that K, contained contributions from g,, as well as g,. Unfortunately, this
phenomenon is general (Bedrosian and Rice, 1971): if the system under study contains all
orders of nonlinearity, the rth frequency kernel will contain contributions not only from g,,
but also from g,,,, g,,4, &6, €tc. (cf. Yasui, 1979).

These inhomogeneous terms cause the various frequency kernels to depend on input power
in a complicated way. That is, when third-order (or higher odd-order) terms are present, K|
doesn’t scale linearly with input amplitude. When fourth-order (or higher even-order) terms
are present, K, doesn’t scale quadratically with input amplitude. Conversely, when a
frequency kernel of order n does not scale as the nth power of input amplitude, one may
deduce the existence of nonlinearities of order n + 2, n + 4, or n + 6, etc. This phenomenon is
not a consequence of frequency-domain analysis. In the time domain, the apparent impulse
response of a highly nonlinear system, appropriately defined, depends not only on y,, but also
on us, us, €tc.

There are two principal approaches to the problem that high-order nonlinearities may
contribute to low-order responses. The first approach is to try to estimate the Volterra kernels
by studying the frequency kernels in the limit as input amplitude goes to zero. The dependence
of K,(f;) on g, is different from its dependence on g;, gs, etc. In Eq. 23 or its suitable
generalization, the coefficients of g; involve third powers of input amplitudes; the cofficients of
gs involve fifth powers of input amplitudes, etc. However, the coefficient of g, is linear in the
input amplitude. Thus, the quotient K( f;)/a; should approach g, in the limit of small inputs.
Similarly, K,( f;, f)/a;a, should converge to g, when the input becomes small, and in like
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manner for higher-order frequency kernels. Volterra showed (in the time domain) that for a
wide class of systems this procedure should work. When it does work, it is a useful method,
since the Volterra kernels of model systems are often easy to calculate (Korenberg, 1973).

There are two reasons why this scheme does not always work in the analysis of strongly
nonlinear, real (and especially biological) systems. First, there are systems in which the
Volterra series does not converge, no matter how small the input signal (Palm and Poggio,
1977). These systems contain interactions formally of all orders, and in general are poorly
described by an offset, a linear component, and a series of successively higher-order
corrections. For example, a system containing a rectifier with a sharp corner is excluded from
the Volterra theory, as mentioned above in our discussion of static systems and Taylor series.

It might be argued that no real system contains a sharp corner or any other nonanalytic
singularity. It is possible, however, that an apparent singularity may be so sharp that an input
small enough to reveal its smoothness results in a response buried in the noise. This points out
the second problem with the small-signal approach required to measure the Volterra kernels.
Often one is interested in the behavior of systems for large input signals. In other situations,
one may be forced to use large signals because of the intrinsic noise in the output. It is
therefore desirable to have an approach that does not require infinitesimal input signals.

If one cannot estimate the Volterra kernels reliably, then one must get as much theoretical
mileage as possible from the frequency kernels themselves. An orthogonal functional
expansion like that based on the frequency kernels is a generalization of the Wiener series
(Wiener, 1958). The theory of the Wiener series may be outlined as follows. First, one chooses
a particular input signal that is not infinitesimal. One presents this signal to the system under
study and observes the output. Next, one determines by calculation the linear system whose
output most closely approximates the output of the test system, in the sense of minimizing the
squared difference between the output of the approximating linear system and the output of
the system under study. If there remains a significant discrepancy between these outputs, one
next determines the second-order system whose output accounts for as much as possible of the
residual difference, and so on. This produces a representation of the system as a Wiener series.
In general, the nth term of a Wiener series is a system containing interactions of orders up to
nth order, but no higher. The dynamics of these interactions are described by the nth order
Wiener kernel. The nth term is defined as the nth-order system whose response explains as
much as possible of the difference in responses between that of the system under study and the
response already accounted for by the first n-1 terms of the Wiener series. The relationship of
Wiener theory to Volterra theory has recently been reviewed by Yasui (1979), with special
attention to the use of Wiener kernels in the evaluation of models.

A Wiener series development exists for an extremely wide class of nonlinear systems,
including nonanalytic systems such as rectifiers with sharp corners. This is essentially because
Wiener’s series is a generalization of orthogonal polynomial series, whereas Volterra’s series is
a generalization of power series. For a nonanalytic system such as a rectifier with a sharp
corner, the Wiener series has an infinite number of terms, but is convergent.

The development of an orthogonal series expansion for nonlinear systems does not depend
on the use of white noise, or even stochastic signals, for its theoretical justification. Indeed, one
can prove that any well-behaved test signal may be used to construct an orthogonal series
expansion for a nonlinear system (Barrett, 1963; Victor and Knight, 1979). The terms of a
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Wiener series depend strongly on the input signal used. Wiener chose to use Gaussian white
noise of fixed power per unit bandwidth. The choice leads to an elegant theory, with a
principal advantage that the Wiener kernels of a simple nonlinear system have simple analytic
forms (see Appendix B). However, the use of Gaussian white noise (Lee and Schetzen, 1965)
introduces problems into the practical application of Wiener’s method (Victor and Knight,
1979). We have demonstrated experimentally that frequency kernels measured with a sum of
sinusoids retain the theoretical advantages of Wiener kernels without suffering from these
measurement problems (Victor, 1979).

Relation of the Frequency Kernels to Wiener Kernels

To establish the relation between the frequency kernels and Wiener kernels, let us consider
what happens as the number of frequencies in the input sinusoidal sum becomes infinite, and
the amplitude at each frequency decreases. Since the individual contributions of each sinusoid
are independent, the distribution of the input level, which is the sum of a large number of
independent random variables, will become Gaussian, by the central-limit theorem (illus-
trated in Fig. 2). As the number of sinusoids increases, the power spectrum of the input
becomes a discrete approximation to filtered Gaussian noise. Thus, both the autocorrelations
and input level distributions for a sum of Q incommensurate sinusoids approach those for a
filtered Gaussian noise. Therefore, one can prove that as Q, the number of sinusoids, becomes
infinite, the frequency kernels become the Fourier transforms of the Wiener kernels based on
an appropriate filtered Gaussian noise. This approximation is good for the nth-order kernel,
provided that n’/4Q is much less than 1 (Victor and Knight, 1979).

SECTION 2: HIGH-ORDER NONLINEARITY IN THE RESPONSES OF
RETINAL GANGLION CELLS.

We wish to give a concrete example of the use of a sum of sinusoids in the analysis of a
particular physiological system. The system in question is the neural pathway that leads to a
cat retinal ganglion cell of the Y type. This is a highly nonlinear system. For certain spatial
patterns of illumination, the linear response of this cell type is essentially absent, whereas the
second- and higher even-order nonlinear responses are large. This demonstrates that our
method, or an equivalently powerful one, is needed in the analysis of this physiological system.
(Experimental methods for ganglion-cell recording and visual stimulation are given in
Hochstein and Shapley, 19764; Victor et al., 1977).

The unit for which data are presented is an off-center Y cell. The temporal stimulus was a
sum of eight sinusoids (set 6, Table I) scaled so that the frequency range was 0.229-31.23 Hz.
This temporal stimulus modulated the contrast of a spatial grating: when the temporal
stimulus passed through zero, the contrast reversed. Each sinusoid contributed a peak contrast
of 0.05, so that the root-mean-squared contrast was 0.10.

The spatial pattern was a 0.25-cycle/degree grating located in the receptive field of the cell
~ so that the first-order response to contrast modulation was negligible. But the second-order
frequency kernel showed significant components over a broad range of input frequencies. The
amplitude | K,(F,, F,) |is illustrated in Fig. 4 A.

The frequencies F, and F, are input frequencies in the sum of sinusoids. The height of the surface at a
point at (F,, F,) indicates the amplitude of the response at F, + F,. This is the amplitude of the
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FIGURE 4 Second-order frequency kernels obtained from a cat retinal ganglion cell of the Y type. The
stimulus was a 0.25 = cycle/degree grating positioned to produce no first-order response. The input signal
was derived from frequency set 6, and the root-mean-squared contrast was a 0.10. Each contour line
indicates 1 impulse/s; the tick marks point downhill. In (A4), the algorithm to remove fourth- and
sixth-order contributions was applied; in (B), this algorithm was not applied. Above each contour are
plotted the second harmonic amplitudes: the values of the second-order frequency kernel along the second
harmonic diagonal (where f; = f;), which is drawn in on the contour map. The second harmonic
amplitudes are plotted vs. input temporal frequency. This figure illustrates that there are irregularities
near the second harmonic diagonal in (B) (without phase averaging) but not in (4) (phase-averaged). Unit
12/3.
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second-order frequency kernel, | K;(F,, F,)|. Similarly, the height of the surface at a point (—F,, F,)
indicates the amplitude of the response at F, — F,, which is |K,(—F,, F,)|. These values were
determined at points (+f], f;) by Fourier analysis of the impulse train. As mentioned above, the Fourier
component at 2f; was doubled to obtain Ky( f; f;). Also, the values K,(—f}, f;), which correspond to an
output frequency of zero, are not defined. These values, along with the values | K,(+F;, F,)| for
frequencies F, and/or F, not in the input stimulus, were interpolated by a standard two-dimensional
cubic spline. The coordinates in the plane range independently over the frequencies in the input stimulus.
(They are logarithmically transformed, except in the immediate neighborhood of F; = 0 or F, = 0.
Where the axes are omitted, the coordinates are transformed linearly.) The resulting surface was plotted
as a contour map, with a vertical scale in which one contour line indicates 1 impulse/s. The tick marks
point downhill. The identity K,(F,, F,) = K,(F,, F,) results in a line of mirror symmetry running on a
45° angle through the sum frequency region (the upper half of the map). Similarly, the relationship
Ky,(—F,, F,) = Ky,(—F,, F)) creates a line of mirror symmetry running at a 45° angle through the
difference frequency region (the lower half of the map). This line, F, = —F), is the line of zero output
frequency. It is perpendicular to the line of second harmonics.

There are two major features of the frequency kernel in Fig. 4 4. The first is a relatively
broad peak on the second harmonic diagonal in the sum region at an input frequency of
~4 Hz. The other feature is a sharper peak at approximately the same input frequency, but in
the difference region. This peak has a height of 9 impulses/s, which is about twice the height
of the peak in the sum region. Frequency kernels such as this one, with one peak in the sum
region and a corresponding peak in the difference region, have implications for modeling the
nonlinear network of the Y cell. These features suggest a dynamical model for the nonlinear
pathway of the Y cell that consists of a linear-nonlinear-linear sandwich, the model analyzed
in Appendix B. The analysis of this nonlinear pathway is presented in other reports (Victor et
al,, 1977; Shapley and Victor, 1979; Victor and Shapley, 19794,b). Here we wish to
empbhasize only conclusions that may be drawn about the nature of the nonlinearity itself.

Previously it has been shown (Hochstein and Shapley, 1976b) that the second harmonic
response of a Y cell to a sinusoidally-modulated luminance grating will increase approxi-
mately linearly with contrast for root-mean-squared contrasts as low as 0.02. This suggested
that the nonlinearity might be similar to a rectifier of some kind, with a relatively sharp corner
at or near zero contrast. Such a nonlinearity is poorly approximated by a linear part plus a
small second-order correction. Rather, one would expect that this nonlinearity would produce
high-order combination frequencies at relatively low contrast.

That this is indeed the case can be seen from a comparison of Fig. 4, 4 and B. The two
frequency kernels were each calculated from data sets of ~4 min. The data for the frequency
kernel of Fig. 4 A was obtained using the algorithm described in Appendix A. This algorithm
removes contaminations from higher even-order components by varying the relative phases of
the sinusoidal inputs. However, the data for the frequency kernel of Fig. 4 B was obtained
using the same set of relative phases (all sinusoids rising through zero at time zero)
repeatedly. It can be seen that there are significant differences between these two contour
maps, especially along the sum frequency diagonal. The frequency kernel measured with the
algorithm for removing higher-order interactions (Fig. 4 4) is smooth; the values of the
frequency kernel at the second harmonic points ( f}, f;) are consistent with those of surround-
ing points. However, the frequency kernel (Fig. 4 B; measured with the same input phases
repeated many times) has values at points on the second harmonic diagonal inconsistent with
those of neighboring points.
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The values of the second harmonic amplitudes (slices through the second-order kernel) are
plotted vs. input temporal frequency in the upper panels of Fig. 4, A and B. These graphs
illustrate the point that the phase-averaged second-order kernel differs significantly from the
second-order kernel obtained without phase averaging. Furthermore, the phase-averaged
second-order frequency kernel is much smoother along the second harmonic diagonal than is
the kernel without phase averaging. There are also significant discrepancies in the phases of
these two frequency kernels at points along the second harmonic diagonal, and at points just
off the zero frequency diagonal in the difference quadrant.

The concentration of discrepancies at the points ( f;, f;) and (—f}, f;_,) is precisely what one
would expect if the discrepancies were due to the presence of fourth- or sixth-order primitive
frequencies “contaminating” the second-order frequency kernel of Fig. 4 B (see Appendix A).
Thus, although we have not resolved individual higher-order components, we have obtained a
clear indication of their presence by comparing phase-averaged kernels with non-phase-
averaged kernels. This result supports the hypothesis that the nonlinearity in the retina is a
sharp one that generates high-order harmonics at relatively low contrast.

To conclude, the second-order frequency kernel in Fig. 4 A4 is a very good estimate of the
Fourier transform of the second-order Wiener kernel of this retinal ganglion cell. Therefore, it
is possible to compare frequency kernels of model systems with such an experimentally
determined kernel (see the example in Appendix B). The presence of nonlinearities of high
order suggests that a synthesis of the neural response from first- and second—order frequency
kernels would only be poor at best. Nevertheless, these frequency kernels are a means to
include or exclude possible model systems whose frequency kernels may be calculated (cf.
Victor and Shapley, 19795).

APPENDIX A

Commensurate Frequencies

Here we discuss the response of a general nonlinear system to a sum of sinusoids, to lay the groundwork
for the complications that arise when the component sinusoids have commensurate frequencies. We first
consider how a system with interactions up to nth order responds to a sum of incommensurate sinusoids.
The output of such a system may contain all frequencies that are sums and differences of the input
frequencies taken at most n at a time. That is, a frequency F may be in the output of such a system if and
only if

)
F=32 ofi  (fy=—f) (AD)

j=-Q

The integers c; are positive integers or zero, expressing which frequencies are involved in the interaction
producing F. The requirement that at most n frequencies are involved is that the sum =& _, ¢; is at most
n. Of course, some of the frequencies that can be represented by Eq. Al for some value of n = 22 _, ¢;
may also be represented with a smaller value of n. For example, 2f, + f_, + f5 = f; + f>. But because the
frequencies f; are incommensurate, this can only happen in a formally trivial way: one of the expressions
for F must involve both adding and subtracting the same input frequency, i.e., adding both f; and
S

The frequencies F that can be represented as a sum of n but no fewer input frequencies are those that
may occur in the output of a nonlinear systm of order n, but no lower-order nonlinear system. We will
call such frequencies F the primitive frequencies of order n. For example, f; + f; is a primitive frequency
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of order two, and 2f, + f_, = 2f; — f; is a primitive frequency of order three. The fundamental
frequencies f; constitute the primitive frequencies of order one.

With the notion of primitive frequencies, it is possible to describe the general nth-order frequency
kernel. The nth-order frequency kernel is the description of the unique nonlinear system of order n whose
output at primitive frequencies of order n matches those of the system under study, and whose output at
all other frequencies is zero. This may be shown inductively by using the definition of the nth term in a
Wiener expansion as the optimal nth order approximation to the system under study (Victor and Knight,
1979).

COMMENSURATE FREQUENCIES A sum of incommensurate sinusoids is a deterministic signal
which may substitute for the stochastic signal of Wiener. But because this deterministic signal, a sum of
incommensurate sinusoids, is not periodic, one would still require an indefinitely long period of time
before the input signal realized its ideal correlation properties. This is essentially because two primitive
frequencies F = 22 _, ¢; f;and F’ = 22 _, ¢} f; may be arbitrarily close, without being identical. Thus, an
indefinitely long period would be needed to resolve all combination frequencies by Fourier analysis.

We therefore chose to make all of the input frequencies commensurate. Each input frequency is
chosen to be a large integer multiple of some very slow frequency, F,. This will cause the input signal
(Eq. 5) to be periodic, with period 1/F,. Unfortunately, it is no longer possible for all of the primitive
frequencies to be distinct, but those that are distinct will be separated by at least F,. Such a periodic
input signal will be convenient for the analysis of nonlinear systems only if primitive frequencies of low
order are distinct. In that case, one may determine low-order frequency kernels by Fourier analyzing the
system’s response over the common period of the input signal, 1/F,. The frequency sets we have used in
experiments are listed in Table I. Some of these sets (sets 1-4) were chosen empirically; others were
chosen by a rule based on the binary system (sets 5-7). But all of these sets have the property that all
first- and second-order primitive frequencies are distinct. Thus, with each signal, the first two frequency
kernels could be extracted by Fourier analysis alone.

THE PROBLEM OF OVERLAPS  Although it is possible to choose commensurate input frequen-
cies so that low-order primitive frequencies are distinct, eventual overlap of primitive frequencies is
inevitable. For example, in set 2 of Table I, we find that 21 + 36 + 3 - 81 + 401 = 701. Thus, the
first-order primitive frequency 701 is also a sixth-order primitive frequency, 21 + 36 + 3 - 81 + 401.
Similarly, the second-order primitive frequency 701 — 401 is a fifth-order primitive frequency 21 + 36
+ 3 . 81, etc. This means that the Fourier component corresponding to some particular primitive
frequency may contain undesired contributions from other primitive frequencies that share the same
output frequency.

This problem, the problem of overlaps, is susceptible to attack. The contributions of different
primitive frequencies that happen to share the same output frequency may be separated. This is because
a response at the primitive frequency F = 22 _, ¢; f; has a phase that varies with £ _, ¢;¢;, where ¢; is
the same as in Eq. 8, the phase of the jth sinusoid at time zero. Thus, the responses of different integer
combinations of the input frequencies, which happen to share the same output frequency, have different
dependences on the phases of the input sinusoids. Therefore, they may be separated by presenting input
signals that share the same frequencies and amplitudes of their component sinusoids, but in different
relative phases.

DIFFERENT INPUT PHASES  Below we will show how one may present the input sinusoids with
different relative phases to separate higher-order overlaps. To carry out this plan efficiently, it is helpful
to use a set of frequencies chosen in an orderly manner. For this purpose, the frequency sets based on the
binary system are most useful. To be specific, we will focus on frequency set 5 of Table I, although the
arguments remain valid for sets 6 and 7 as well. In set 5, the jth frequency is proportional to 4 - 2/ — 1:
{7,15, 31, 63, 127, 255, 511, 1023}.

Since all of the frequencies in this set are odd multiples of a fundamental repeat frequency, an
even-order primitive frequency must be an even harmonic of this fundamental repeat frequency.
Conversely, an odd-order primitive frequency must be an odd harmonic of the fundamental repeat
frequency. Therefore, if two primitive frequencies coincide, either both must be of even order or both
must be of odd order.
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Furthermore, having a primitive frequency of order m equal to a primitive frequency of order n
implies that there is a combination frquency of order m + n (not necessarily primitive) equal to zero.
This is because the equation

Q (4

2 ofi= 2 <f, (A2)
j=-Q j--Q
may be rearranged to obtain
[
j--Q

where d; = ¢; + ¢’_;. Since each of the frequencies f; are odd integers, we may conclude that =2 _,d;is
even. Let us assume that the mth-order primitive frequency F = Z£ _, ¢; f; and the nth-order primitive
frequency F’' = ZI-Q__Q ¢} f; form the simplest example of a coincidence. That is to say, F and F’ do not
share a common input frequency: if ¢; # 0, then ¢ = 0, and if ¢j # 0, then ¢; = 0. Otherwise, f — f; =
F’ — f; would express an overlap of an (m — 1)th order and an (n — 1)th-order primitive frequency.
With this additional condition, Eq. A3 states that an overlap of an nth and an mth primitive frequency
means that an (m + n)th-order primitive frequency is zero.

Conversely, for every kth-order primitive frequency that is zero, we can find several pairs of primitive
frequencies F and F’ that overlap, and whose orders sum to &, by breaking up the sum (Eq. A3). We
have therefore reduced the study of coincidences of primitive frequencies to a study of even-order
primitive frequencies that are zero.

In general, no second-order primitive frequency is zero. For the binary frequency sets, we now show
that no fourth-order primitive frequency is zero.

Because all the component frequencies are one less than a multiple of 8, a combination of four
of them can be zero (a multiple of 8) only if two are added, and two subtracted. Suppose that

Si+ fx = fo — fn=0.Then
@4-2-1N+@-2-1NN-@-2"-1)-@4-2"-1)=0. (A4)
This implies that
242k =2 42 (AS)

This equation may be interpreted by considering each side of the equation as a representation of binary
numbers. If the integers j and k are distinct, 2 + 2* is the number whose representation in the binary
scale consists of a 1 in the jth and kth places, and a zero everywhere else. Similarly, if  and m are
distinct, then the right-hand side of Eq. AS is the number whose representation in the binary scale
consists of a 1 in the £th and mth places, and a zero everywhere else. Thus, if j and k are distinct, we may
conclude that the pair (j, k) is equal to the pair (2,m), in some order. Clearly, if j and k are equal, then
Eq. AS implies that j = k = 2 = m, by a similar argument. Thus the only fourth-order frequencies that
are zero are those of the form f; + f; — f; — fi, and those frequencies are not primitive.

However, there are sixth-order primitive frequencies that sum to zero.

Since each input frequency is one less than a multiple of 8, such a combination must contain three
input frequencies added and three input frequencies subtracted. That is,

@G- 2-nND+@-2x-1+@.2"-1)
- 4-2"-1)-(@4-:2"-1)—-(4-22-1)=0. (A6)
This implies

22k 2= 2m o 2n 4 2P, (A7)
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If j, k, and @ are all distinct, the left-hand side is the number whose representation in the binary scale
contains a 1 in the jth, kth, and £th places, and a 0 everywhere else. In that case, the triples ( j, k, £) and
(m, n, p) must be equal in some order, and the sum (Eq. A6) does not represent a primitive frequency.
Now suppose that j = k. Then the left-hand side of Eq. A7 is the number whose representation in the
binary scale has a 1 in the (j + 1)th and 2th places, and a 0 everywhere else. This can be attained on the
right-hand side by choosing m = j + 1 and n = p = € — 1 (provided that j < 7 and £ = 2).

Thus, the following primitive sixth-order frequencies are zero:

2f; + fo — fi1 — 2f51- (A8)

There are no other primitive sixth-order frequencies that are zero.

Eq. A8 generates a large number of coincidences between fifth- and first-order primitive frequencies,
as well as between second- and fourth-order primitive frequencies. The second-order frequencies
involved in these coincidences are the pure second harmonics 2f; and the difference frequencies f; — f;, 1,
which are involved more often than the other second-order frequencies. Thus, if fourth-order contribu-
tions are significant, one might expect to find that these points of the second-order frequency kernel were
out of line with their neighbors, which experience fewer fourth-order contributions. In fact, under certain
stimulus conditions involving fairly low contrast, this was found to be the case (see Section 2) in
experiments on retinal cells.

This motivated the development of an algorithm (Victor et al., 1977) for varying the relative phases of
the input sinusoids to remove the fourth-order “contamination” of the second-order frequency kernel.
We found that this could be accomplished by phase-shifting the input sinusoids either by a half-cycle, or
not at all. Therefore, the phase shift

2¢; + do — D1 — 26y (A9)

of the sixth-order primitive frequency in Eq. A8 is either zero or half a cycle. Since the phase shifts ¢;
and ¢,_, each enter only after being multiplied by 2, the phase shift (Eq. A9) is equal to ¢, — ¢;,,. Thus
the phase shift of the sixth-order primitive frequency (Eq. A8) is zero if either both f; and f;,, were
phase-shifted by half a cycle, or if neither of them were. If either one but not both of f; or f;,, were
phase-shifted, the total phase shift would be half a cycle.

If we could force the sixth-order frequency (Eq. A8) to be phase-shifted by half a cycle in half of the
stimulus presentations, then its contribution would average out to zero. Simultaneously, this would cause
all of the contributions of a coincident fourth-order primitive frequency on a second-order frequency to
average out to zero, for half the time the contribution would be in phase, and in half the cases they would
be half a cycle out of phase. The same reasoning applies to fifth-order overlaps on first-order frequencies,
and all other overlaps stemming from the primitive frequencies (Eq. A8).

Such a scheme would require that for each pair of sinusoids (j+1, 2), the following would be true: in
exactly half of the stimulus presentations, either both are phase-shifted by half a cycle, or both are not
phase-shifted at all. In the other half of the stimulus presentations, exactly one of these two sinusoids is
phase-shifted by half a cycle, and the other remains in standard phase. This can be accomplished with a
set of eight stimulus presentations, each with a different set of relative phases. The phase of the jth
sinusoid in the ith presentation is defined by the entry a; in an 8 x 8 Hadamard matrix (Beauchamp,
1975). Such an array forms the body of Table Al. The rule is: the jth sinusoid is presented in the ith
episode in standard phase (which is arbitrary) if the entry a;;is +1, and is phase-shifted by half a cycle if
a;is —1. This satisfied the requirement stated above, as we now show.

The orthogonality relationship of a Hadamard matrix implies =}_, a;; - a; = 0 for j # k. This implies
that exactly four of the products a;a; are +1, and exactly four are —1. But following the rule for
assigning phases, this means that in exactly four of the presentations, the sinusoids j and k are either
both phase-shifted (a; = a; = —1) or neither phase-shifted (a; = a4 = 1). In the other four
presentations, exactly one of the sinusoids is phase-shifted (a; = —1,a, = 1 ora; = 1, a; = —1).

At this point, we have shown that the use of any 8 x 8 Hadamard matrix to determine the phases of
the input sinusoids results in the removal of all fifth-order primitive frequency components from each
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TABLE Al
A HADAMARD MATRIX USED IN THE ALGORITHM FOR SHIFTING THE RELATIVE
PHASES OF THE COMPONENT SINUSOIDS TO REMOVE HIGHER-ORDER OVERLAPS. AN
ENTRY OF +1 INDICATES NO PHASE SHIFT; AN ENTRY OF —1 INDICATES A PHASE
SHIFT OF HALF A CYCLE

Episode No. Frequency No.
1 2 3 4 S 6 7 8

1 1 1 1 1
-1 -1 1 1 -1 -1
-1 1 -1 -1 -1 1
1 1 -1 -1 -1 1 -1
1 -1 -1 -1 1 -1 1
-1 -1 1 -1 1 1 -1
-1 -1 -1 1 -1 1 1
1 -1 1 1 -1 -1 -1

——

00 NNV A WN =
— b

first-order primitive frequency, and also results in the removal of all fourth-order primitive frequency
components from each second-order primitive frequency. We still have the selection of the particular
8 x 8 Hadamard matrix at our disposal. We can choose it to remove the overlaps that result from the
eighth-order primitive frequencies that are zero.

Let us consider the eight-order primitive frequencies that are zero. These frequencies must be of the
form f; + fi + f3 + fmu — fo — f» — Jo — J,, since each frequency is one less than a multiple of 8. As
before, we arrive at an equation

p X, LN, LN, L, LN L S (A10)

to be solved in integers. If any integer exponent on the left is equal to an integer exponent on the right,
this equation reduces to Eq. A7, and the primitive frequency (Eq. A10) is not of order eight, but at most
of order six. The only new solutions of Eq. A10 arise if j = k = 2 — 1. Then, provided that j < 6 and m =
3, we find

2./_; +fj+l +fm_.f;'+2°fm—l "me—2=0- (All)
TABLE All

DEMONSTRATION THAT EIGHTH-ORDER OVERLAPS ARE CANCELLED BY THE PHASE-
SHIFTING ALGORITHM OF TABLE Al. FOR FURTHER DETAILS, SEE TEXT

Episodes in which
¢j+l + ¢m - ¢j+2 - ¢m-l
is 14 cycle away from
standard phase

Episodes in which

Pair (jv m) ¢j+l + ¢m - ¢j+2 - ¢m—l
is in standard phase

(1,8) 1,3,57 2,4,6,8
(1,7) 1,2,5,6 3,4,7,8
(1,6) 1,4,5,8 2,3,6,7
(1,5) 1,2,3,4 5,6,7,8
(2,8) 1,4,6,7 2,3,5,8
2,7 1,2,3,4 5,6,7,8
(2,6) 1,3,6,8 2,4,5,7
(3.8) 1,3,6,8 2,4,5,7
3,7 1,2,7,8 3,4,5,6
(4,8) 1,2,5,6 3,4,7,8
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These are the only primitive eighth-order frequencies that are zero. Furthermore, if m — j = 1, 2, or 3,
the sum reduces to the sixth-order sum (Eq. A8).

If each frequency is shifted by either half a cycle or nothing at all, then the phase shift of the
eighth-order primitive frequency (Eq. A11) is

bii1 + Om — Djia — Dy (A12)

The columns of a standard 8 x 8 Hadamard matrix were permuted empirically until all contributions
from frequencies of the type (Eq. A11) would average to zero. This in turn required that the total phase
shift (Eq. A12) is switched by half a cycle in exactly four of the eight episodes, for each pair (j, m)
satisfying j < 6, m = 3, and m — j # 1, 2, or 3. The Hadamard matrix in Table Al satisfies this
condition, as is checked in Table AIl.

Thus, the particular Hadamard matrix presented in Table AI provides a scheme for the removal of
coincidences that arise from the eighth-order sums (Eq. A11). When this is accomplished, the
lowest-order primitive frequencies that contribute to responses measured at second-order primitive
frequencies are of order eight, and the lowest-order primitive frequencies that contribute to responses
measured at the fundamentals are of order nine.

APPENDIX B

The Second-Order Frequency Kernel of a Linear-Nonlinear-Linear “Sandwich”

It is worthwhile to calculate K, for a simple model system that is somewhat less abstract than the one
defined by Eq. 17. Consider the “sandwich” model depicted in Fig. B1. The input first passes through
linear filter L,, with an impulse-response L,(#) and a transfer function L,(F). The output of this filter is
squared by the static nonlinearity N. This squared output then passes through a final linear filter L,,
with impulse-response L,(¢) and transfer function l:,(F ). Rather than calculate u, and then g, for this
system, we will use the definition (Eq. 9) of K, directly. When the sum of sinusoids forms the input to
this system, the signal at the point P, sp,(t), is

1 & .
sn() =5 2 aLi(f) exp liQafit + ). (B1)
j=-0 _
The signal at the point P,, s5,(?), is the square of the above expression:
1 £ Q . R )
sn() =732 2 a@L()L(f) - explil2n(f; + f)t + &+ &1} (B2)
j--Q k--0

We now apply the linear filter L, to obtain the final response of the system. In the frequency domain,
the action of a linear filter multiplies each sinusoidal component by the value of the filter’s transfer
function at the frequency of the sinusoid. In our case, the frequencies present at P,, the input to L,, are
the second-order combination frequencies that occur in the exponentials of Eq. B2. Hence the output of
the system is

o 0 R R .
"0 -3 X 3 aal(DLUDLU, +f) - xp UL, + L1+ 6+ il (BY)

This equation for the system’s response may be substituted directly into Eqs. 9 to obtain the
second-order frequency kernel of this linear-nonlinear-linear sandwich:

K[ £) = gyl ()L S)LL S + fo)- (B4)

Below we will show that the second-order frequency kernel of any system composed of a linear filter,
followed by a static nonlinearity (not necessarily square law), followed by a linear filter has
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FIGURE Bl A model nonlinear system consisting of an initial linear stage, L,, followed by a static
nonlinearity, N, followed by a second linear stage, L,.

FIGURE B2 The decomposition of a general linear-nonlinear-linear system of Fig. Bl into a parallel
combination of linear-nonlinear-linear systems, each corresponding to a single term in the Wiener
expansion. The coefficients w, are chosen by an orthogonal-series decomposition of the original nonlinear-
ity V; the function H, is the Hermite polynomial of order n.

approximately the form of Eq. B4. This demonstration rests on the close correspondence of the
frequency kernels with the Fourier transforms of the Wiener kernels.

The particularly simple form of Eq. B4 illustrates one principal advantage of nonlinear analysis in the
frequency domain. It allows the interpretation of the response of a nonlinear system in terms of what
precedes and what follows a hypothetical nonlinearity. (Of course this does not mean that such models
are appropriate for complex nonlinear systems, but they may be a good place to begin.) In contrast, in
the time domain, the expression for u, for a model sandwich is somewhat more complicated:

min(ry,7;)
By(7y, 72) = ,/(: L(ry — 7)L\(7, — 1) Ly(7) d7. (BS)
This expression is merely the Fourier transform of

&(fi, /) = LA L(SH) LA fi + f)- (B6)

Next, consider again the linear-nonlinear-linear sandwich shown in Fig. B1. We now allow the static
nonlinearity N to have any input-output relation. That is, the signal sp, at the point P, is related to the
signal at the point P,, §, by

8p,(1) = N[$5(D)], (B7)

where N is an arbitrary function. The composite system may be expanded as a Wiener series in the
following way: first, calculate the power, 2, in the signal at point P,. This power depends only on the
spectral distribution of the input Gaussian noise, and on the transfer function L, of the linear filter L,.
Next, expand the input-output relation for /V as a sum of Hermite polynomials H, of ascending order:

N(x) = 2_ w,H, (). (B8)
n=0

The Hermite polynomials H,, are chosen to be orthogonal with respect to the weight (1/v2xP)e /%%
Now, the nonlinearity /V can be considered to be a parallel collection of simpler nonlinearities, each of
which corresponds to a term in the sum (Eq. B8). Furthermore, because of the linearity of L,, the entire
system can be regarded as a parallel collection of linear-nonlinear-linear systems. In each system, the
linear prefilter is L,, and the linear postfilter is L,. In the nth subsystem, the nonlinearity in between
them is a constant multiple of a Hermite polynomial, w,H,. This arrangement is shown in Fig. B2. It
may now be shown that the nth subsystem is in fact the nth term in the Wiener expansion of the original
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system (Price, 1958). This is true essentially because of the orthogonality relationships of the Hermite
polynomials.

Now it is easy to describe the nth-order Wiener kernel of the composite system. In particular, the
second-order Wiener kernel is the function u,(¢,, #,) for the system corresponding to the n = 2 term of
Eq. B8. But this system contains a nonlinearity that is merely a square-law device plus an offset, since
the second Hermite polynomial H,(x) is x> — P. Therefore, we can use the formula (Eq. B5) that we
have already obtained for such a purely quadratic system. Thus we obtain:

min(r),7,)
(71, 72) = w, _/; Li(ry — 7)Li(7, — 7)Ly(7) d7. (B9)

the expression for the second order Wiener kernel of any linear-nonlinear-linear sandwich.

We may use this calculation to determine the approximate frequency kernels of this generic
linear-nonlinear-linear system. That is because the nth-order frequency kernel approximates the Fourier
transform of the corresponding Wiener kernel with a proportional error of ~ n*/4Q, where Q is the
number of sinusoids in the input signal (Victor and Knight, 1979). Thus, since Eq. B9 differs from its
counterpart (Eq. BS) only by the factor w,, the second-order frequency kernel of this generic system is
approximately given by

Ko fi i) = waa;a  Li(S)Li( )L (S + fo)- (B10)
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