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ABSTRACT We have analyzed the responses of cat retinal
ﬁanglion cells to luminosity gratings that are modulated in time

y a sum of sinusoids. A judicious choice of the component
temporal frequencies permits a separation of the linear and
second-order nonlinear components. Y cell responses show
harmonic generation and intermodulation distortion over a
wide frequency range. These nonlinear components predomi-
nate over the linear components for certain types of spatial
stimuli. Nonlinear components in X cells are greatly diminished
in comparison. The character of the nonlinear responses pro-
vides strong constraints on prospective models for the nonlinear
pathway of the Y cell.

The visual pathway of the cat has been studied intensively in
order to discover the stages in which the visual image undergoes
neural transformation. Analyses of responses in retinal ganglion
cells have led to the discovery of parallel processing in the cat
retina (1). Distinct classes of ganglion cells, named X cells and
Y cells, combine light-evoked signals from the receptors in
different ways.

Previous studies in this laboratory provided evidence for the
hypothesis that Y cells are excited by an ensemble of nonlinear
spatial subunits (2, 3). Y cell receptive fields also have linear
center and surround mechanisms. The linear and nonlinear
mechanisms that drive the Y cell do not have similar spatial
properties. This was demonstrated with the use of sinusoidally
modulated spatial sine gratings as a visual stimulus. The linear
mechanisms dominate the Y cell’s response to gratings of low
spatial frequency while the nonlinear subunits are the dominant
input when the grating has a high spatial frequency. We have
also found evidence that the linear and nonlinear mechanisms
overlap extensively in the receptive field of the ganglion cell
(3).

This paper reports on further studies of the nonlinearity in
Y retinal ganglion cells of the cat with a new technique for
nonlinear systems analysis. From the response to a grating that
is amplitude-modulated by a sum of several sinusoids, we can
derive a joint frequency response to pairs of input modulation
frequencies. This joint response (or frequency kernel), K(f1,fs),
is susceptible to easy intuitive interpretation. It is also closely
related to the Fourier transform of the second-order Wiener
kernel (4).

The frequency kernel K(f1,f2) represents the amount of
nonlinear response produced by the system due to the presence
of two sinusoids at the frequencies f1 and fo. For a linear system,
K(f1,f2) = 0. We have used the kernel as a concise character-
ization of the dynamics of the nonlinear retinal pathway and
as a clue to the nature of the nonlinearity. The linear frequency
responses and second-order frequency kernels of X and Y cells
have certain qualitative features that must be shared by any
model for the retinal network. These features allow us to reject
several simple models.
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METHODS

Our experimental methods for recording from optic tract fibers
have been described in detail (2). The visual stimulus was a
spatial pattern of light modulated in time. A raster was formed
on a cathode ray tube by sweep and triangle wave circuits. Its
mean luminance was 20 cd/m?2, and its area was 20° X 20°.
Synchronized to the sweep was a pattern waveform from a
function generator; in these experiments the pattern was a sine
grating. The pattern waveform was modulated in time by
multiplying it by a relatively slow modulation signal produced
by the computer. This produced a spatial pattern whose contrast
changed with time (cf. ref. 5). If I ;54 is the maximum intensity
on the screen and I'mip is the minimum intensity, then the def-
inition of contrast is:

(Imax - Imin)/(Imax + Imin)~

The modulation signal used in these experiments was a pe-
riodic signal composed of the sum of several sinusoids. The use
of this signal in nonlinear systems analysis was an innovation
suggested by Spekreijse’s technique (6). The sum was formed
by either six or eight sinusoids that spanned five to seven oc-
taves. The component sinusoids were equal in amplitude in each
episode. In different episodes, the amplitudes of the components
were set to produce peak contrasts from 0.0125 up to 0.1 per
sinusoid.

This modulation signal was chosen because (1) its values are
distributed approximately as a Gaussian distribution, (if) it has
a power spectrum that spans a broad frequency band, and (i)
the discreteness of the input frequencies leads to a corre-
sponding discreteness in the output frequencies, and this allows
digital filtering of frequency-response components. When this
modulation signal is used, one observes the effect of non-
linearities by measuring components in the response at har-
monics and at combination frequencies. Linear transductions
would yield only responses at the input set of frequencies, f;.
A quadratic nonlinearity would also produce response com-
ponents at frequencies f; + f; if f; and f; were frequencies in
the input sinusoidal sum.

This technique requires a judicious choice of input
frequencies. An inappropriate choice could lead to ambiguities
that would obscure the dynamics of the nonlinear network
under study. For instance, if the input frequencies were chosen
so that fa — f1 = f3 — fs, then the amplitude of the output at
this mixture frequency would come from separate sources of
intermodulation. If there are N input frequencies, then they
must be chosen so that one can resolve the following N2 com-
bination frequencies: N second harmonics, %N(N — 1) sum
frequencies, and %LN(N — 1) difference frequencies. These
frequencies must also be distinct from the N fundamental re-
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sponse frequencies, f;, We used several frequency sets that
satisfied this condition. Expressed as multiples of 1/65.536 Hz,
the sets were {42,72,162,352,802,1402}, {14,30,62,126,
254,510,1022,2046}, and {15,31,63,127,255,511,1023,2047}. The
six-frequency set covered the range 0.6-21 Hz; the eight-fre-
quency sets covered the range 0.2-30 Hz. In each set, successive
frequencies were separated by about an octave.

Because all fundamental and second-order response
frequencies were distinct, Fourier analysis of the nerve impulse
train sufficed to determine each of the fundamental and sec-
ond-order response components. The second-order response
to each pair of input frequencies f; and f2 appeared at a sepa-
rate pair of output frequencies f; £ fa. The amplitude and
phase shift measured at each of these output frequencies de-
fined a single value of the experimentally determined sec-
ond-order frequency kernel. The amplitude and phase at f; +
f2 defined the value of K(f1,fs); the amplitude and phase at f,
— fo defined the value of K(f1,—f2).

Contour maps of the amplitude of the second-order fre-
quency kernel K(f1,f2) were constructed in the following way.
Cartesian coordinates were chosen that were proportional to
the logarithm of the frequencies f) and f; over the range of the
input frequencies. In the range from zero to the lowest fre-
quency used, the Cartesian coordinates were made linear. The
laboratory measurements furnished values of the amplitude of
K(f1,fo) at discrete points within this two-dimensional coor-
dinate system. The measurements at (f1,f1) should be multi-
plied by 2 for combinatorial reasons, and this has been done in
all the graphs of frequency kernels in this paper. In principle,
the values on the line fo = —f; are not measurable. Therefore,
they were approximated by averaging neighboring values. The
values of the amplitude at all other points where there was no
experimental evaluation were interpolated by a standard
two-dimensional cubic spline procedure. On theoretical
grounds, the amplitude of K(f1,f2) remains unchanged if f; and
f2 are either interchanged or else are both changed in signature.
Because of this symmetry the behavior of the amplitude over
the entire plane is determined by its behavior within the wedge
between the lines f, = f; and fo = —f}. For easier interpreta-
tion, the contour maps were plotted on the full right half plane.
Thus, there are two lines of reflection: one runs diagonally
through the upper half of the graph at fo = f; (the second
harmonic diagonal), and the other runs diagonally through the
lower half of the graph at f» = —f; (the zero frequency diago-
nal). '

Relation to Wiener Analysis. The second-order frequency
kernel is closely related to the Fourier transform of the sec-
ond-order Wiener kernel (4). This is important because one can
easily calculate the Wiener kernels of simple nonlinear models.
Then, one can compare our measured frequency kernels with
these theoretical predictions. If the system under study has no
response components beyond first-order (linear) and second-
order, the correspondence between our frequency kernel and
the Wiener frequency kernel is exact. If the system does have
higher-order response components, then our second-order
frequency kernel contains contributions from Wiener fre-
quency kernels of higher order. If the input frequencies were
infinite in number and incommensurate, these higher-order
contributions would vanish. On theoretical grounds, six or eight
is a large enough number of sinusoids of incommensurate fre-
quency to make higher-order contributions to the second-order
frequency kernel negligible. The fact that we used sinusoids
with commensurate frequencies results in a deviation of another
kind: some higher-order combination frequencies of the input
frequencies must coincide with the second-order frequencies.
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This problem can be countered by presenting the input sinus-
oids with different relative phases and appropriately averaging
the second-order responses. This procedure yields a frequency
kernel that is extremely close to the Fourier transform of the
second-order Wiener kernel. Therefore, we can compare the-
oretical predictions for Wiener kernels of several simple models
with our experimental data. (Details on the above considerations
will be published separately.)

Presentation of input sinusoids with different relative phases
is especially efficient when one uses the eight-frequency sets
mentioned above. With these sets, all coincidences of higher-
order response frequencies with second-order response
frequencies are consequences of the identity

(2i=1)=2(2"1=1)=(2k—1)—2(2k1 —1).

We used a scheme in which the eight frequencies were pre-
sented with eight different sets of relative phases. The relative
phases were determined by a Hadamard matrix (7) by means
of the following algorithm. An entry a;; of +1 denotes that the
ith sinusoid was presented with its maximum at time zero in the
jth episode; an entry of —1 denotes that the sinusoid was pre-
sented with its minimum at time zero. A higher-order response
component and a coincident second-order component have
different dependences on the phases of the input sinusoids. For
certain Hadamard matrices, each fourth- and sixth-order
component has no net effect on a coincident second-order
component because the phases will reinforce in four episodes
and cancel in four episodes. Furthermore, all odd-order re-
sponse frequencies are distinct from all even-order response
frequencies. Thus, the lowest-order response frequencies whose
effects on a second-order response frequency are not cancelled
are those of order eight.

RESULTS

So far, we have studied 30 Y cells and 10 X cells in 15 cats. Each
ganglion cell was mapped on a tangent screen and classified as
X or Y by the following method. A sinusoidal grating, of high
enough spatial frequency that it was just resolvable by the cell,
was positioned in the center of the receptive field. This grating
underwent periodic contrast reversal in time. Cells that re-
sponded at the fundamental frequency of the modulation were
called X; cells that responded at the second harmonic of the
modulation were classified as Y. In addition, the X cell response
depended strongly on the spatial phase of the grating, exhibiting
a sharp null for some particular spatial phase. The second
harmonic response of the Y cell was independent of the spatial
phase of a just-resolvable grating (cf. ref. 2).

The temporal modulation signal was then changed to the
computer-generated sinusoidal sum. The computer recorded
the times of nerve impulse occurrences for a series of presen-
tations of the grating stimulus. For each cell, we explored a
range of spatial frequencies, spatial phases, and contrasts.

The linear response amplitudes and the second-order fre-
quency kernels obtained by Fourier analysis of the neural re-
sponses are shown graphically in the contour maps of Fig. 1 for
representative X and Y cells. The contour maps show the re-
sponse at second-order combination frequencies, f; + f;. Results
for sum frequencies (f; + f;) are in the upper half of each graph
and for difference frequencies (fi — f;) in the lower. The"
measured response amplitudes were reproducible to within
about 1 impulse per sec on replicate runs. Thus, features of the
frequency kernel that are distinguished by just one contour line
are not significant.

The responses illustrated in Fig. 1 were elicited with a 0.5-
cycle per degree (c/d) sinusoidal grating positioned to maximize
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F1G. 1. Linear response and second-order frequency kernels
obtained from a typical Y cell (Left) and a typical X cell (Right). The
spatial pattern was a 0.5-cycle/degree sinusoidal grating in a position
that produced a maximal linear response. The temporal modulation
signal was the sum of eight sinusoids, each with a peak contrast of 0.05.
Each contour line represents 1 impulse per sec; the tick-marks point
downhill. Frequency is measured in Hz.

the fundamental response. The temporal signal was a sum of
eight sinusoids, each producing a peak contrast of 0.05. An
average over eight relative phases of the input sinusoids was
performed, as described under Methods. The Y cell’s largest
linear response was less than 2 impulses per sec. However, the
frequency kernel had a large amplitude for many of the sec-
ond-order combination frequencies. Both pure second har-
monics (2f;) and intermodulation frequencies (f; + f;) were
present in the impulse train. The peak second-order frequency
response was more than 8 impulses per sec near the diagonal
f1 = fo at an input frequency of about 6 Hz. The largest re-
sponse at a second-order difference frequency was about 5
impulses per sec, at a somewhat higher input frequency.
Clearly, the second-order response components dominated this
neuron’s response. A nearby X cell had a peak linear response
of 16 impulses per sec to the input frequency near 8 Hz. All of
the secord-order response components elicited from this cell
were 2 impulses per sec or less.

In general, Y-type cat retinal ganglion cells have substantial
response components at most sum and difference frequencies.
The second-order frequency kernel typically peaked between
5 and 10 Hz on the input. The peak in the sum frequency
spectrum lay on or near the diagonal f; = f5. The difference
frequency components differ significantly from the corre-
sponding sum frequency components. The X-type retinal
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FIG. 2. Linear responses and second-order frequency kernels
obtained from a Y cell with a 0.25-c/d grating. (Left) Grating posi-
tioned to produce a maximal linear response. (Right) Grating posi-
tioned to produce a minimal linear response. The temporal modula-
tion was a sum of eight sinusoids, each with a peak contrast of 0.05.
Each contour line represents 1 impulse per sec; the tick-marks point
downhill. Frequency is measured in Hz.

ganglion cells had substantially smaller second-order nonlinear
response components under all stimulus conditions when
compared with Y cells. Over a wide range of spatial frequencies
of the pattern waveform, the linear response components of X
cells dominated the total neural response.

The responses of Y cells at low spatial frequencies (typicaily
0.5 c¢/d or less) had substantial linear and second-order com-
ponents. It was always possible to find a spatial phase of the
grating, the null position, at which the linear responses became
negligible. The second-order frequency kernel was virtually
independent of spatial phase for moderate contrasts. This
finding is illustrated in Fig. 2. A 0.25-c/d grating was presented,
in alternate episodes, either in a position that produced a
maximum linear response or at the null position. A sinusoidal
sum composed of eight sinusoids, each producing a peak con-
trast of 0.1, formed the temporal modulation. An average over
the relative phases of the input sinusoids was performed. The
linear responses in the peak position of the grating were more
than 7 impulses per sec to two of the input frequencies; at the
null position, the linear responses were indistinguishable from
noise. Nevertheless, the second-order frequency kernels re-
corded in the two positions were nearly identical. At sufficiently
high contrasts, the fundamental response may be so large as to
produce second-order components by truncation. In this case,
one would expect a small dependence of the second-order



Neurobiology: Victor et al.

frequency kernel on spatial phase. In other Y cells, this effect
has been observed.

DISCUSSION

The following results are useful for the formulation of theo-
retical models of the retina. (i) There is a clear qualitative dis-
tinction between X and Y cells in the amplitudes of their sec-
ond-order frequency kernels. (i4) The Y cell nonlinearity pro-
duces substantial intermodulation responses as well as the sec-
ond harmonics previously reported (2). (iii) There is a signifi-
cant difference between responses at sum frequencies (f; + f;)
and responses at difference frequencies (f; — f;). (iv) At peak
and null positions for the fundamental frequency responses, the
second-order frequency kernels were practically identical,
providing strong evidence that the linear and nonlinear path-
ways are parallel. (v) Second harmonic responses of Y cells are
approximately proportional to peak contrast. [This result has
been reported before (cf. ref. 3) and we confirmed it in exper-
iments in which a single sinusoid was used to modulate a sine
grating of high spatial frequency.] The background luminance
used in the present series of experiments (20 cd/m?2) was 20
times higher than used previously, yet the result was the
same. .

With these results it is possible to test models of the nonlinear
pathway in the cat retina. Initially, we will consider the nature
of the nonlinearity in the pathway that projects to Y cells, and
then we will discuss models for the sequence of linear and
nonlinear stages in this pathway.

Nature of Nonlinearity. The first class of nonlinearity one
might consider is of the “operating point” type. One might
suppose that the system is linear for small perturbations about
an operating point but, as the input amplitude grows, the sys-
tem’s behavior is described by a segment of a nonlinear oper-
ating curve. Examples are fractional exponent. power functions,
logarithmic nonlinearities, and soft saturations. This hypothesis
predicts that the amplitude of the second-order nonlinearity
should decrease quadratically to zero as input amplitude goes
to zero. This contradicts the observation that second harmonic
responses scale less than quadratically (in fact, proportionally)
with contrast. Another hypothesis destroyed by the same data
is that the nonlinear element is a pure square law device.

A possibility not ruled out is that the nonlinearity resembles
that of a rectifier of some kind (cf. ref. 3). The data imply that
such a rectifier has a singularity at or near zero contrast and has
an output proportional to contrast up to contrasts of about 0.15
or 0.20 and then saturates rapidly. We cannot yet determine
whether this hypothetical rectifier is symmetric (like a full-wave
rectifier) or asymmetric (like a half-wave rectifier).

If the nonlinearity of a system is of the “operating point”
type, it makes sense to analyze that system by a best-approxi-
mating linear system, a best-approximating second-order
nonlinear system, a best-approximating third-order nonlinear
system, and so on. This is the approach carried out by Mar-
marelis and Naka (8, 9), who have investigated operating point
nonlinearities in catfish retinal cells. For these nonlinear sys-
tems, the magnitudes of the nonlinear response components are
small compared to the linear component and become van-
ishingly small as the input amplitude is reduced. However, we
have shown that the cat Y cell nonlinearity is not of the oper-
ating point type. Therefore, one expects that the order-by-order
modelling might not be useful in this case. Other examples exist
of systems that are so highly nonlinear that they cannot be
treated as operating point nonlinearities. For instance, Naka
and his colleagues (9) found that Wiener analysis had to be
carried to third order to obtain only passable agreement with
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the responses of the “transient” type of catfish amacrine cell.
We have abandoned the order-by-order analysis. Instead, we
formulate nonlinear models and test them on some of the fea-
tures of the second-order frequency kernels. The sinusoidal sum
is close enough to Gaussian noise to enable us to test predictions
derived from the Wiener theory. The models we have tested
are static nonlinearities preceded, or followed, or preceded and
followed by linear filters.

Models for Y Cell Nonlinear Pathway. One possible hy-
pothesis is that the ganglion cell receives a linear transformation
of the input signal but, because its firing rate is bounded below
by zero, nonlinear responses are produced by clipping. Various
arguments dispose of this hypothesis, but perhaps the simplest
is that, when the pattern waveform is a grating with a high
spatial frequency, Y cells produce significant second-order
frequency responses in the absence of linear frequency re-
sponses.

Somewhat more generally, one might imagine that the
ganglion cell applies some other static nonlinearity at the level
of impulse generation. For Gaussian inputs, this would imply
that the second-order frequency kernel is K(f,fs) = ¢ F(f;)
F(f2) in which F is the frequency response of the linear trans-
ducer preceding the nonlinearity and ¢ depends on the shape
of this nonlinearity and on the input spectrum. [An equivalent
formula has been stated elsewhere (8) and an outline of a proof
is given below.]* In particular, the form above implies that
|K(f1.f2)| = |K(f1,—f2)|. This prediction contradicts our third
result—that the response amplitudes for difference frequencies
depart from those at the corresponding sum frequencies.

Another possibility is that a static nonlinearity is present at
the input to an otherwise linear system. This predicts K(f1,f2)
=¢'G(f1 + f2)in which ¢’ is again a scaling factor and G is the
linear frequency response of the stages following the nonlin-
earity.* Our data disprove this hypothesis too; along a curve of
constant f; + fo, the frequency kernel has a prominent dip in
amplitude where either f) or f5 is small.

The simplest model that is not excluded immediately by the
qualitative features of the frequency kernels is a sandwich
composed of a static nonlinearity between two linear stages.
One predicts that, for Gaussian inputs, K(f1,f2) = ¢”F(f1) F(f2)
G(f1 + f2) in which ¢” is a scaling factor, F is the frequency
response of the linear element that precedes the static nonlin-
earity, and G is the frequency response of the linear element
that follows.* We have compared the second-order frequency
kernel of Y cells with that of the best-fitting linear-nonlinear-
linear sandwich model. At any given contrast, there is good
qualitative agreement of the major features. Response com-
ponents typically match to within 2 impulses per sec. Although
a “sandwich model” is adequate for one contrast level, the
shapes of the frequency kernels and the phases of the compo-
nent responses change with contrast. This suggests that the el-
ements of the sandwich must be considered to have a para-
metric dependence on contrast, and so a simple linear-nonlin-
ear-linear sandwich model is also inadequate to account for our
results. Even though the simple sandwich model must be re-
jected, we think that it may serve as the core of a more elaborate
model that can account for the second-order frequency kernels
at all contrasts. Models that are undergoing testing include

* These formulas may be verified as follows. First decompose the static
nonlinear element into a parallel series of static devices, each of which
corresponds to an appropriately normalized Hermite polynomial.
Only the second Hermite polynomial contributes to the second-order
Wiener kernel. For this purely quadratic subsystem, a simple cal-
culation yields the desired result.
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feedforward or feedback shunting inhibition (10, 11) adorning
the simple sandwich model.

The resemblance between the highly layered morphology
of the retina and the serial cascade of transducers in the
“sandwich model” gives us hope that it may be possible to de-
vise a unified model that will be consistent with anatomy and
dynamics. The serial stages of tranductions in the nonlinear
model of a cat Y cell might be related to the chain of connec-
tions that lead from bipolar cells to ganglion cells. From our
work on X cells, and from the work by Marmarelis and Naka
(8) on the catfish retina, it is plausible to think that photore-
ceptors and bipolar cells are approximately linear. These cells
may be identified with the linear filter that precedes the non-
linearity. We guess that the nonlinearity resides in one of the
types of amacrine cells. The filter after the nonlinearity may
be related to the characteristic amacrine cell synapses that feed
back onto bipolar cells and other amacrines.
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