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Orientation signals, which are crucial to many aspects
of visual function, are more complex and varied in the
natural world than in the stimuli typically used for
laboratory investigation. Gratings and lines have a
single orientation, but in natural stimuli, local features
have multiple orientations, and multiple orientations
can occur even at the same location. Moreover,
orientation cues can arise not only from pairwise
spatial correlations, but from higher-order ones as well.
To investigate these orientation cues and how they
interact, we examined segmentation performance for
visual textures in which the strengths of different kinds
of orientation cues were varied independently, while
controlling potential confounds such as differences in
luminance statistics. Second-order cues (the kind
present in gratings) at different orientations are largely
processed independently: There is no cancellation of
positive and negative signals at orientations that differ
by 458. Third-order orientation cues are readily
detected and interact only minimally with second-order
cues. However, they combine across orientations in a
different way: Positive and negative signals largely
cancel if the orientations differ by 908. Two additional
elements are superimposed on this picture. First,
corners play a special role. When second-order
orientation cues combine to produce corners, they
provide a stronger signal for texture segregation than
can be accounted for by their individual effects. Second,
while the object versus background distinction does not
influence processing of second-order orientation cues,
this distinction influences the processing of third-order
orientation cues.

Introduction

Functional and physiological considerations indicate
the importance of orientation signals for making sense
of the visual world. At a functional level, orientation of
edges and luminance gradients are primary ingredients
of both shape and texture, and thus, orientation signals
are critical for segregating a scene into its component
objects and for analyzing the surface properties of these
components. At a physiological level, selective tuning
to orientation is a neurophysiological property that
strikingly distinguishes cortical neurons from precort-
ical ones.

Despite the central role played by orientation
signals, there is a large gap between the richness of
orientation signals that occur in natural scenes and the
way that orientation processing is typically studied
experimentally. In the laboratory, orientation selectiv-
ity is often studied with stimuli that target a single
orientation, either over a wide area of the visual field
(sine gratings, line gratings) or locally (e.g., Gabor
patches). But natural scenes have components with
features at multiple orientations, not just across the
image but even at a single location (for example, due to
transparency or the presence of multiple scales).
Physiology indicates that visual cortex has the potential
to capture this richness: Neurons with the entire range
of orientation tunings are present at every location, so
the pattern of activity in a single hypercolumn can
represent multiple orientations. It is unclear as yet to
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what extent this population activity pattern is ‘‘read
out’’ by later processing or is available to perception.

These considerations suggest the need for a broad
approach to the analysis of how orientation signals are
processed at the perceptual level, which recognizes that
multiple orientation signals may be present simulta-
neously and that they may interact. Perhaps the most
straightforward way to study combinations of orien-
tation signals is to use superpositions of simple stimuli,
such as Gabors (Sagi, 1988) or gratings (Movshon,
Adelson, Gizzi, & Newsome, 1985). With this ap-
proach, interactions can be studied by varying the
relative orientations of the components. However, a
potential confound arises: As the relative orientation of
the components of a plaid changes, other aspects of the
image change as well. For example, there are changes in
the sizes of the patches of brightness and darkness that
arise at the reinforcing hills and valleys, there are
changes in the luminance histogram, and there are
‘‘beats’’—periodicities at low spatial frequencies. So it
is unclear how to separate interactions of orientation
signals from these other image attributes.

Micropattern arrays, consisting of Gabors, dot
clusters, or line segments whose orientations vary
across space, are another way to probe aspects of
orientation processing that cannot be accessed by the
use of individual gratings and Gabor patches. Via
experiments based on these arrays, it is possible to
identify features that support effortless texture seg-
mentation (Caelli & Julesz, 1978; Caelli, Julesz, &
Gilbert, 1978; Julesz, 1981), to analyze how spatial
contrasts in orientation are processed (Wolfson &
Landy, 1998), to measure sensitivity to curvature (Ben-
Shahar & Zucker, 2004), to determine the relationship
of processing of orientation signals and contrast
polarity (Motoyoshi & Kingdom, 2007), and to define
the role of co-circularity and of small and large
orientation differences (Motoyoshi & Kingdom, 2010).

Contrast-modulated gratings and noises (Baker &
Mareschal, 2001; Landy & Henry, 2007; Landy &
Oruc, 2002; Larsson, Landy, & Heeger, 2006; Lu &
Sperling, 1995; Motoyoshi & Kingdom, 2003; Scho-
field, Rock, Sun, Jiang, & Georgeson, 2010) represent
yet another class of stimuli with complex orientation
characteristics. They have been used, for example,
(Motoyoshi & Kingdom, 2003) to define the orienta-
tion bandwidth and opponent nature of orientation
channels. However, all of these approaches have an
intrinsic limitation: They only probe one basic kind of
orientation signal. For lines, gratings, and Gabors,
orientation can be determined from the spatial fre-
quency content of their components (i.e., its power
spectrum). For contrast-modulated noises and related
stimuli, orientation cannot be determined from the
power spectrum of the raw stimulus, but it can be
determined from the power spectrum of a stimulus that

has been transformed by the action of a simple local
nonlinearity. But there are yet other kinds of orienta-
tion signals: Orientation information can also be
carried by correlations of order three and higher. As we
describe below, these may be present even when the
above cues are absent. The implication of this
observation is that the orientation signals that are
present in one region of an image can be quite complex:
They include not only a distribution of the orientation
cues that can be understood in terms of local spatial
frequency content, but of others as well.

The origin of third-order orientation cues is
straightforward. A third-order correlation is calculated
from the average product of the intensities of an image
at triplets of points. As this configuration of points is
rotated, the value of this product changes. For
example, the intensities among three points arranged in
a y-shaped region may be correlated, while the
intensities among points arranged in a

q
-shaped region

are independent. Put another way, the value of the
third-order correlation depends on the orientation of
the ‘‘aperture’’ through which it is calculated. Because
of this dependence, it follows that third-order correla-
tions can carry information about orientation.

Before proceeding further, it may be helpful to
clarify the ‘‘order’’ terminology used here. In the sense
used here, the ‘‘order’’ of an orientation cue refers to
the minimum number of points in the image that need
to be simultaneously inspected to determine the
orientation. While this usage is mathematically natural,
it differs from the traditional usage in vision research
with regard to orientation and motion. In these
domains, the term ‘‘first-order’’ refers to cues (such as
gratings or lines) that can be extracted by a simple
linear filter, and the term ‘‘second-order’’ refers to cues
that require some form of local nonlinear preprocessing
(such as filter and rectify), prior to extraction of
orientation or motion by a second linear filter (Baker &
Mareschal, 2001; Landy & Henry, 2007; Landy &
Oruc, 2002; Larsson et al., 2006; Lu & Sperling, 1995;
Motoyoshi & Kingdom, 2003; Schofield et al., 2010).
But in the sense used here, gratings and lines are said to
contain ‘‘second-order’’ cues, since a pair of points
needs to be inspected to determine their orientation.
Visual stimuli traditionally described as ‘‘second-order’’
(i.e., the ones in the preceding references) contain
fourth-order cues in the sense used here, since a pair of
points need to be inspected to extract the relevant local
feature (such as contrast), and two features—and thus
four points—need to be analyzed at the later filter
stage. The shift in terminology is required because
orientation can also be carried by correlations among
triplets of points—third-order in the sense used here—
and the traditional terminology has no obvious
parallel.
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Informal evidence that these third-order orientation
cues are actually used can be gained by visual
inspection of images that contain them. Examples of
such images are shown in Figure 1 and Figure 4
(below).

In each case, three image intensities are strongly
correlated when the aperture consists of an y-shaped
arrangement of checks, but only when the aperture is in
a particular orientation (i.e., y but not

q
,
p
, or x).

Correspondingly, the images all have prominent
regions in the shape of right triangles, all of which share
the same orientation. This shared orientation is
apparent on visual inspection of the images. Less
obvious, but readily verified, is that these images do not
contain any pairwise correlations (for details, see Victor
& Conte, 2012)—so the entire visual impression of an

oriented texture is conveyed by third-order (and
possibly higher-order) orientation cues. The basic
reason that pairwise correlations are absent is the rule
for coloring the checks within the x-shaped template:
The parity of the number of white checks is biased to be
either typically even, or typically odd. Since the
coloring rule is based on the parity of all three checks as
a group, individual pairs of checks can be colored
independently. As an example, at the highest level of
correlation in a ‘‘white triangle’’ texture (Figure 1), all
y-shaped regions contain either three white checks or
one white check and two black checks. The four
possible configurations occur with equal probability:
three white checks or a single white check in any of the
three positions along with black checks in the other two
positions. As a consequence, pairs of checks match and
mismatch with equal frequency, so there are no second-
order correlations. Additionally, there is no difference
in the frequency of white and black checks.

The orientation cues present in these images are
closely related to specific kinds of ‘‘non-Fourier’’
motion cues: For motion cues, the regions of correla-
tion are slanted in a space-time plane; here, the regions
of correlation are slanted in a plane with two spatial
coordinates. In both cases, the designation ‘‘non-
Fourier’’ is applicable, since the slanted regions of
correlation involve more than two points and are
therefore not captured by the power spectrum. (One of
the ‘‘glider’’ non-Fourier motion stimuli of Hu and
Victor [2010] is the space-time version of the third-
order orientation stimuli described here.) Many illusory
contours—such as the contour defined by abutting
gratings of different orientations—can also be consid-
ered fourth-order orientation cues, since the illusory
contour is defined by a relationship between a pair of
regions, each of which is in turn defined by second-
order statistics. As is the case with second-order
orientation cues, higher-order orientation cues can also
be present in combination with each other (examples in
Figure 4 and Figure 7, below); they can also be present
in combination with second-order cues (Figure 5,
below).

Thus, orientation cues can be quite complex: They
can be carried by pairwise correlations (as in gratings),
or by higher-order correlations, and cues of either kind
can be present alone or in combination.

The approach taken here attempts to address at least
a portion of this complexity. To do this, we make use of
a set of ‘‘maximum-entropy’’ stimuli (detailed in Victor
& Conte, 2012) consisting of visual textures specified by
their local correlations. This stimulus set has 10
coordinates; eight of them—described below—control
the strength of orientation cues. Four of these
coordinates are second-order (the b’s, below), and four
are third-order (the h’s, below). Each of these cues can
be introduced independently or in combination, and

Figure 1. (A) The experimental paradigm. Trials were subject-

initiated and began with a fixation spot (300 ms), followed by a

stimulus (120 ms), followed by a random mask (500 ms). (B)

Example stimuli. Stimuli consisted of a 64 · 64 array of checks,

in which a 16 · 64 target region is positioned eight checks from

one of the four edges of the array. Stimuli were of two types:

left, the background is random, and the target is structured

(here, hy ¼ 1), or right, the background is structured and the

target is random. The red rectangles indicate the location of the

target and were not visible during the trials.
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without changing the distribution of intensities—thus
eliminating a key confound.

We use these stimuli in a texture segmentation task
to determine human sensitivity to orientation cues
individually, how they interact in pairs (both within
and across orders), and in more complex combinations.
A picture that is relatively simple and highly consistent
across subjects emerges.

The ‘‘maximum-entropy’’ property of these textures
guarantees that they are as random as possible, other
than the spatial correlations that we explicitly specify.
This is a key advantage in these experiments, as it
allows us to focus on how the different kinds of image
statistics interact at the level of processing, rather than
at the level of how they might interact via producing
alterations in the luminance distribution, or other
changes in local statistics. Additionally, since it
provides for control over long-range correlations, the
maximum-entropy property enables analysis of the
extent to which emergent properties play a role in
visual performance.

Other classes of textures are also maximum-entropy,
but they achieve this goal at the expense of certain
limitations that are not shared by the stimuli used here.
Specifically, textures based on independent discrete
elements (e.g., micropattern textures, or ‘‘IID’’ textures
composed of checks whose luminances are indepen-
dently chosen from the same distribution [Chubb,
Landy, & Econopouly, 2004]) achieve maximum
entropy. While they can be used to probe sensitivities to
statistics beyond second order, the method of con-
struction requires that adjacent elements are uncorre-
lated. This restricts the kinds of image statistics that
can be explored to those that depend on single
elements. Conversely, filtered Gaussian noises achieve
maximum entropy and include correlations across
space, but the correlations are limited to second order.
In contrast, the texture stimuli used here are maximum-
entropy stimuli that combine both attributes: They
include correlations beyond second order and also that
extend across space. This enables them to serve as
probes of a wide variety of statistics that might provide
orientation cues.

The advantages of the present approach do not come
without cost. The main limitation is that the checker-
board lattice plays an essential role in defining the
correlations and constructing the stimuli. Because of
this, these stimuli cannot be used to probe interactions
among orientations that are close, and cannot be used
to make inferences about perceptual differences be-
tween cardinal orientations and oblique ones—since
the lattice itself leads to differences in these cues. As a
good example of the complementary advantages of
stimuli based on Gabor patches, see Motoyoshi and
Kingdom (2010), who used this approach to determine
the interactions of orientation signals (‘‘second-order’’

in the terminology used here) across a wide range of
large and small orientation differences.

Finally, it is worth emphasizing that although the
psychophysical judgments of course are based on
individual images, the viewpoint taken is a statistical
one. That is, the images are considered to be
representatives of an ensemble, and the statistical
properties described above are rigorously applicable to
the ensemble, not to individual images (Victor, 1994).
We take the statistical view for several reasons. First, it
allows for completely independent manipulation of the
coordinates of interest. Rigorous control of correla-
tions is possible at the ensemble level, but not for
individual images: Since individual images are finite,
the correlations estimated from the individual images
will differ from that of the ensemble. Fortunately, for
images of the size used, this difference is expected to be
minor (Maddess, Nagai, Victor, & Taylor, 2007), so
that individual images serve as good surrogates for the
ensemble. Second, we are asking the subject to perform
a statistical task: Even in principle, the ‘‘correct’’ choice
on any given trial is simply the most likely choice—
though the statistical evidence available to an ideal
observer is quite strong. But most importantly,
ensembles defined by characteristic statistics play a
critical role in the normal function of the visual system.
Intuitively, one recognizes a texture not by identifying a
particular exemplar, but by recognizing the class to
which it belongs. Experimentally, categorization of
visual images into statistical classes is rapid, robust,
and highly conserved across subjects (Julesz, Gilbert, &
Victor, 1978; Victor & Conte, 1991), and the image
statistics that support these classifications are demon-
strably among the ‘‘tokens’’ of visual working memory
(Victor & Conte, 2004).

Methods

The stimulus space

The overall goal of these experiments is to determine
how the visual system processes local image statistics
that carry information about orientation, and how
these statistics interact. To do this, we draw stimuli
from a space of images in which local statistics are
individually specified, and long-range statistics are as
random as possible given the local specifications. The
stimulus space is described by 10 coordinates (corre-
sponding to the number of independent local image
statistics for a 2 · 2 array of binary checks); of these,
eight are potential carriers of orientation information.
We focus on these, but for the reader’s convenience we
also summarize the relevant aspects of the full stimulus
space. For a complete description of the space and the
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construction of stimuli within it, see Victor and Conte
(2012).

All images consist of binary (black and white) images
on a checkerboard lattice. The local statistics used to
specify a stimulus consist of the probabilities of all
2 · 2 blocks, i.e., the frequency with which each way of
coloring a 2 · 2 ‘‘windowpane’’ of checks occurs in the
stimulus. Although there are 16¼ 22·2 kinds of blocks,
there are only 10 free parameters. The reduction in the
number of degrees of freedom occurs because the
blocks can be placed in overlapping fashion, and they
must match where they overlap. Linear combinations
of these 16 probabilities provide 10 independent
coordinates, which, together, fully specify the stimulus
space. The coordinates fall into categories based on
their order, i.e., the number of checks that must be
simultaneously inspected to determine their values. As
detailed below, there is one first-order coordinate
(denoted c), four second-order coordinates (denoted b_,
bj, b\, and b/), four third-order coordinates (denoted hy,
hx, h
p
, and h

q
), and one fourth-order coordinate

(denoted a). All coordinates range from�1 to 1, and a
completely random binary image corresponds to all 10
coordinates having the value 0. Our focus is on the four
b’s and the four h’s, since they are the potential carriers
of orientation information. To describe these and the
two nonoriented coordinates c and a in detail, we use
the convention that white checks are denoted by 1, and
black checks are denoted by 0.

The overall luminance bias of the image is captured
by c: It is the difference between the probability of a
white check and the probability of a black check. If c¼
1, all checks are white; if c¼�1, all checks are black;
and if c ¼ 0, both colors are equally likely.

The b’s capture the pairwise (second-order) statistics:
They are the difference between the probability that
two neighboring checks match (i.e., both are white or
both are black), and the probability that they do not
match (i.e., one is white and one is black). If b¼ 1, all
checks match their nearest neighbor (in the direction
indicated by the subscript), and if b ¼�1, they all
mismatch. The four subscripts (b_, bj, b\, and b/)
correspond to the direction that is relevant to the
match. For example, b_¼ 1 means that all 1 · 2 blocks
are either (0 0) or (1 1) and none are (0 1) or (1 0);
such images will be dominated by horizontal stripes. If
b_ ¼�1, all 1 · 2 blocks are either (0 1) or (1 0) and
none are (0 0) or (1 1); in such images, horizontal rows
will have alternating black and white checks. Values of
b_ between 0 and 1 indicate a partial bias towards
matching neighbors, while values between �1 and 0
indicate a partial bias towards mismatching neighbors,
and b_ ¼ 0 means that matching and mismatching
neighbors are equally likely. Similarly, bj, b\, and b/

capture the pairwise correlations in the vertical

direction and the two oblique directions. Image patches
with b ¼60.4 are shown in Figure 2, upper panels.

The h’s capture the statistics of triplets of checks
arranged in an x-shaped configuration. Since there are
four possible orientations for an x-shaped configura-
tion within a 2 · 2 windowpane, there are four h-
statistics, hy, hx, hp, and h

q
. Each of them measures the

third-order correlation within the corresponding x-
shaped region by comparing the probability that the
region contains an even number of white checks versus
an odd number of white checks. If h ¼ 1, only an odd
number of white checks (one or three) are present; h¼
�1 means the opposite. For example, hy means that

only the configurations
1

1 1

� �
,

1
0 0

� �
,

0
1 0

� �
,

or
0

0 1

� �
are present (the fourth element of the 2 · 2

region is unconstrained); such images will have

prominent white triangular-shaped regions pointing

downward and to the right. If hy¼�1, only the

configurations
0

0 0

� �
,

0
1 1

� �
,

1
0 1

� �
, or

1
1 0

� �
are present; such images will have prominent

black triangular-shaped regions. Image patches with
h¼60.72 (for hy, hx, and h

p
) are shown in Figure 2,

lower panels.
The final coordinate, a, captures the statistics of

quadruplets of checks in a 2 · 2 block: a¼1 means that
an even number of them are white, and a¼�1 means
that an odd number are white. This gamut has been
studied extensively (Julesz et al., 1978; Victor, Chubb,
& Conte, 2005; Victor & Conte, 1989, 1991, 1996,
2004), and is not our focus here.

In sum, of the 10 coordinates {c, b_, bj, b\, b/, hy, hx,
h
p
, h
q
, a}, eight of them carry orientation information.

They consist of the four second-order statistics {b_, bj,
b\, b/} and the four third-order statistics {hy, hx, h

p
,

h
q
}.

Stimuli

To determine psychophysical sensitivity to image
statistics and their combinations, we used the texture
segmentation paradigm (Figure 1) first developed by
Chubb and coworkers for the study of textures in which
each check’s luminance is independently chosen from
the same distribution (Chubb et al., 2004), and later
adopted for correlated textures (Victor et al., 2005;
Victor & Conte, 2012). The basic stimulus consisted of
a 64 · 64 array of checks, in which a target region (a
16 · 64 rectangle) was positioned eight checks from
one of the four edges of the array. This target region
was distinguished from the remainder of the array by
its statistics. To ensure that the subject responded on
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the basis of segmentation (rather than, say, a texture
gradient), we randomly intermixed trials of two types:
(a) trials in which the background was random, and the
target had a nonzero value of one or more image
statistic, and (b) trials in which the background had the
nonzero values, and the target was random (see Figure
1B).

We explored the stimulus space in a radial fashion,
i.e., by choosing points along rays in different
directions. Three kinds of directions were used: (a)
Along a coordinate axis: A single coordinate (one of
the b’s or one of the h’s) was set at a nonzero value,
either positive or negative. In each direction, four or
five equally-spaced values were chosen to span the
range from below threshold to well above threshold
based on pilot experiments. For b_ and bj, the
maximum (absolute value) was 0.45, for b\ and b/, the
maximum was 0.75, and for the hs, the maximum was
1.0. (b) In a coordinate plane: A pair of coordinates
was set at a nonzero value. This was done in all

quadrants (i.e., in all sign combinations: both coordi-
nates positive, both negative, and coordinates that
were opposite in sign). The ratio of the coordinate
values was fixed and chosen in approximate propor-
tion to the above maximum values. Two values along
each direction were studied. (c) Combinations of four
coordinates of the same order (all four b’s or all four
h’s). All four coordinates had the same absolute value,
and their signs were chosen either to match or to
alternate as a function of orientation (see Figure 7).
Four equally-spaced values were chosen, 0.075, 0.125,
0.175, and 0.225. (0.225 is 90% of the maximum
possible value.) As described in detail in Victor and
Conte (2012; see its table 2), the unspecified coordi-
nates were assigned by first setting the values of all
lower-order coordinates to zero, and then setting the
remaining coordinates to values that maximized the
entropy of the resulting images. In most cases, these
other coordinate values were zero; in the cases in
which the value was nonzero, it was below the

Figure 2. Psychometric functions for individual image statistics that carry orientation information. (A) Second-order correlations in

cardinal (b_, bj) and oblique directions (b\, b/) directions. For each statistic, psychometric functions are shown for negative excursions

(left element of each pair) and positive excursions (right element of each pair). Chance performance is 0.25. The patches above the

psychometric functions show typical 32 · 32 samples of images defined by the corresponding second-order statistic, constructed

with b¼60.4. For second-order statistics, positive values correspond to correlation in one direction; negative values correspond to

anticorrelation in that direction. (B) Third-order correlations in each of three directions (hy, hx, h
p
). Psychometric functions as in (A).

The image samples are constructed with h ¼60.72. For third-order statistics, positive values correspond to an excess of white

triangular patches in a particular orientation; negative values correspond to an excess of dark triangular patches in the same

orientation. Data from two representative subjects, MC and DT, out of N ¼ 6.
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perceptual threshold. For example, for a (b_, bj)
combination, the maximum-entropy value of a is
approximately b2 þ b2

j . The thresholds are ,0.2 for
this combination of b’s, and the corresponding a ¼
0.08 is far below its threshold, which is .;0.5. Full
details for the construction of the on-axis and
coordinate-plane stimulus are provided in (Victor &
Conte, 2012).

For stimuli specified by four nonzero coordinates,
we used the ‘‘donut algorithm’’ of Victor and Conte
(2012) to mix two in-plane textures. For the b’s, we
mixed a stimulus specified by nonzero values of b_ and
b\ with a stimulus specified by nonzero values of bj and
b/. For the h’s, we mixed a stimulus specified by
nonzero values of hy and hx with one specified by h

p
and h

q
(when h’s had the same signs), and we mixed a

stimulus specified by hy and h
p
with one specified by hx

and h
q
(when h’s had the alternating signs). These

strategies ensured that the values of the unspecified
coordinates were exactly zero, with the exception that
for stimuli constructed as a mixture of four b’s, the
value of a could be as high as 0.36 (for all b’s set at
0.225, the largest value used). Since this value was not
negligible, we assessed its effect on threshold in two
subjects (MC and DT), by determining sensitivities to a
and its pairwise interactions with the b’s.

Stimuli were presented on a mean-gray background,
followedbya randommask.Thedisplay sizewas158· 158
(check size, 14 min), contrast was 1.0, and viewing
distance was 1 m. Studies were carried out on an LCD
monitor with a mean luminance of 23 cd/m2, a refresh
rate of 100 Hz, and a presentation duration of 120 ms,
driven by a Cambridge Research ViSaGe system
(Cambridge Research Systems, Ltd., Rochester, Kent,
UK).

Subjects

Studies were conducted in seven normal subjects
(three male, four female), ages 21 to 54. Six subjects
(MC, DT, JD, DF, KP, and TT) participated in
extensive experiments to assess on-axis sensitivities and
pairwise combinations. Four of these subjects (MC,
DT, JD, and DF) viewed all pairwise combinations; KP
and TT did not view stimuli consisting of combinations
containing one b and one h. Three of the seven subjects
(MC, DT, and DC) participated in experiments to
assess four-component combinations. On-axis sensitiv-
ities from DC were also measured, but to a much more
limited extent. Of the seven subjects, MC is an
experienced psychophysical observer, DC had no
observing experience prior to the current study, and the
other subjects had modest viewing experience (10 to
100 hours). All subjects other than MC and DT were
naive to the purposes of the experiment. All subjects

had visual acuities (corrected if necessary) of 20/20 or
better.

Procedure

The subject’s task was to identify the position of the
target, in a four-alternative forced choice (4-AFC)
texture segregation task (Figure 1A). Subjects were told
that the target was equally likely to appear in any of
four locations (top, right, bottom, or left), and they
were shown examples of stimuli of both types: target
structured/background random and target random/
background structured. They were instructed to
maintain central fixation, rather than to attempt to
scan the stimulus. Auditory feedback for incorrect
responses was given during training trials but not
during data collection. After performance stabilized
(approximately 2 hr for a new subject), blocks of trials
(with trials presented in randomized order) were
presented. Block order was counterbalanced across
subjects.

Experiments were organized into two kinds of
blocks. In the first kind of block, stimuli were presented
in the positive and negative directions along two axes
(four directions, five strengths), and in oblique direc-
tions in the plane that these axes determined (four
directions, two strengths). Each coordinate value was
used for an equal number of stimuli in each target
location, and an equal number of the two stimulus
types (target structured/background random or target
random/background structured, see Figure 1B). This
resulted in 288 trials per block (160 on-axis stimuli, 128
pairwise combinations). We collected 15 such blocks
per subject (4,320 trials), grouped into three experi-
mental sessions, yielding 120 to 240 responses for each
set of coordinate values.

In the second, kind of block, on-axis, and four-
component stimuli were presented. On-axis stimuli
were presented along three (b_, bj, b\) or two (hy, hx)
axes (four positive and four negative strengths), and in
each of three combination directions (four strengths
each). This resulted in 192 (b’s) or 128 (h’s) on-axis
stimuli and 96 combination stimuli, resulting in 288
(b’s) or 224 (h’s) trials per block. We collected 15 such
blocks per subject (4,320 b’s or 3,360 h’s trials),
grouped into five experimental sessions, yielding 120
responses for each set of coordinate values.

Analysis

Determination of thresholds from psychophysical data

As in Victor et al. (2005), measured values of the
fraction correct (FC) are fit to Weibull functions via
maximum likelihood:
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FCðxÞ ¼ 1

4
þ 3

4

�
1� 2�ðx=arÞ

br
�

ð1Þ

For the analysis of the blocks consisting of on-axis
and pairwise combinations, this fitting procedure is
initially carried out separately along each ray r. For
rays along the coordinate axes, x is the coordinate
value; for the rays in the oblique directions, x is the
distance from the origin. In most cases, the Weibull
shape parameter (the exponent br) was in the range 2.2
to 2.7 for each ray, or had confidence limits that
included this range. Therefore, we fit the entire dataset
in each coordinate plane by a set of Weibull functions
constrained to share a common exponent b, but
allowing the position parameter ar to vary across rays.
(Note, however, that the exponent b was allowed to
vary between planes; see Table 1, below). Next ar was
taken as a measure of threshold, as x¼ ar yields
performance halfway between floor and ceiling (here,
FC¼ 0.625). The 95%-confidence limits for ar were
determined via 1,000-sample bootstraps. When perfor-
mance was sufficiently close to chance for the entire
ray, the upper confidence limit of these bootstraps was
large (e.g., .105); in these cases, the threshold was
taken to be infinity. Unless otherwise noted, averages
across subjects were calculated as harmonic means.
(We used harmonic means to avoid divergences that
would have resulted from averaging immeasurably
large thresholds. The harmonic mean of thresholds is
equivalent to the arithmetic mean of the sensitivities.)

For the analysis of the blocks consisting of on-axis
and four-component combinations, a similar procedure
was used: Each dataset was fit by a set of Weibull
functions constrained to share a common exponent b,
but allowing for different values of ar for each
combination. Here, for the combination directions, we
used the convention that x in Equation 1 is the
common coordinate value of each component, since
this facilitates the key comparisons below. (This
convention is not the same as expressing thresholds in
terms of distance from the origin. Since all four
coordinates had the same absolute value, the Euclidean
distance of a typical point (6x, 6x, 6x, 6x) from the
origin is 2x. Thus, to convert thresholds expressed as
single coordinate values into thresholds expressed as
distance from the origin, the numerical value should be
doubled.)

Modeling of four-component thresholds

To compare the thresholds obtained with four-
component stimuli with the thresholds obtained from
the on-axis (one-component) and in-plane (two-com-
ponent) stimuli, we used a simple descriptive model:
Individual image statistics are combined to form a
decision variable, and when the decision variable

reaches threshold, the subject is able to perform the
segmentation task.

For the combination rule that takes the individual
statistics to the decision variable, we used a general
quadratic form,

P
i,jQi,jcicj, where ci represents an

individual image statistic (for mixtures of second-order
statistics, c1¼ b_, c2¼ bj, c3 ¼ b\, and c4¼ b/; for
mixtures of third-order statistics, c1¼ hy, c2¼ hx,
c3¼ h

p
, and c4¼ h

q
) and the quantities Qi,j to describe

how the image statistics ci and cj combine and interact.
Without loss of generality, the threshold is set to 1
(since alternative values could be absorbed into theQi,j).
Thus, the model states that threshold is reached whenX

i;j

Qi;jcicj ¼ 1: ð2Þ

This is the equation of a generic ellipsoid, whose shape
is determined by the parameters Qi,j.

We chose a quadratic combination rule because it
has proven effective for cue combination in other
settings (Macadam, 1942; Poirson, Wandell, Varner, &
Brainard, 1990; Saarela & Landy, 2012) and because its
intersection with any coordinate plane is an ellipse,
generally consistent with the isodiscrimination contours
measured experimentally (see Figures 3, 4, and 5,
below). (We do not intend to rule out the possibility
that the combination rule could also be characterized
by a higher exponent [Quick, 1974; Shephard, 1964; To,
Baddeley, Troscianko, & Tolhurst, 2011], perhaps with
slightly greater accuracy.) As has been previously noted
(Poirson et al., 1990), Equation 2 has two interpreta-
tions: individual channels with sensitivity to more than
one image statistic or channels with exclusive sensitivity
to one image statistic that interact at a later stage. Since
both interpretations have identical mathematical for-
mulations, we do not attempt to distinguish between
them.

For individual subjects, we determined the values of
the parameters Qi,j from the thresholds Tr measured
along all rays r (including the on-axis and in-plane
rays). That is, we adjusted the Qi,j so that along each
ray r,

P
i,jQi,jci(Tr)cj(Tr) was as close as possible to 1,

where ci(Tr) is the value of the texture coordinate i
when threshold is reached in direction r. The adjust-
ment of the Qi,j was accomplished by minimizing

F ¼
X
r

��X
i;j

Qi;jciðTrÞcjðTrÞ
�
� 1
�2
; ð3Þ

which is a linear least-squares fitting procedure for the
Qi,j. Note that F ¼ 0 only if the threshold Tr in each
direction r is exactly predicted by Equation 2, namely,P

i,jQi,jci(Tr)cj(Tr)¼ 1. Once the parameters Qi,j are
determined by minimizing Equation 3, Equation 2
provides a prediction of thresholds along any ray,
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including rays in directions that correspond to the four-
component mixtures: it is the value Tpred for whichX

i;j

Qi;jciðTpredÞcjðTpredÞ ¼ 1: ð4Þ

The above procedure was modified slightly for the
second-order statistics because, as mentioned above,
these stimuli also contain fourth-order correlations.
(The fourth-order correlations are described by the
parameter a, which indicates the fraction of 2 · 2
blocks that contain an even number of white checks.
Nonzero values of a arise because the correlations
among each pair of checks in a 2 · 2 block induces
correlations among the quadruple of checks. For
example, if all nearest-neighbor pairs tend to match,
then the number of white checks within a 2 · 2 block is
more likely to be even. For further details, see Victor
and Conte [2012]). To take the fourth-order correla-
tions into account, we include a fifth coordinate c5¼ a
in Equation 2 and Equation 3, along with the four
coordinates corresponding to the second-order statis-
tics (c1¼ b_, c2¼ bj, c3¼ b\, and c4¼ b/). In two of the
subjects (MC and DT) in which we measured responses
to the four-component mixtures, we also determined
the isodiscrimination contours in the planes spanned by
a and the bs (Victor & Conte, 2012), and we used those
results here to fit the five-coordinate version of
Equation 3, and to predict thresholds via Equation 4.
The remaining subject (DC) only participated in
experiments involving the individual image statistics
and the four-component mixtures. For this subject, we
determined the model parameters by using his mea-
sured thresholds along the coordinate axes and the
orientations of the ellipses obtained from MC or DT.
This amounts to stretching the best-fitting ellipses from
subject MC or DT along each coordinate axis to match
DC’s single-statistic thresholds (i.e., rescaling each Qi,j

by a factor gi), and rescaling the interaction terms Qi,j

by the geometric mean of these scaling factors
ffiffiffiffiffiffiffiffi
gigj
p

.

Complete pooling and independent processing

The model described above contains two limiting
cases, which we denote by ‘‘complete pooling’’ and
‘‘independent processing.’’ For the complete pooling
case, image statistics are combined by simple summa-
tion within a single channel, so the decision variable isP

kqkck (where qk is the sensitivity of the channel to the
statistic ck). The above model reduces to this case when
the off-diagonal parameters Qi,j are chosen according
to Qi,j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi;iQj;j

p
. In this case,

P
i,jQi,jcicj ¼ (

P
kqkck)

2

and Equation 2 is equivalent to

X
k

qkck

�����
����� ¼ 1: ð5Þ

For the ‘‘independent processing’’ case, interactions
between image statistics are assumed to be 0; this
corresponds to setting Qi,j¼ 0 for i 6¼ j in the above, so
Equation 2 becomesX

k

Qk;kc
2
k ¼ 1: ð6Þ

The parameter values qk and Qk,k for the above
models were determined from the on-axis thresholds.

Results

We analyzed human sensitivity to orientation signals
via a 4-AFC segmentation task, in which the difference
between the target texture and that of the background
was determined by one or more image statistics. Four
of the image statistics were second-order ({b_, bj, b\, b/},
which captured pairwise correlations in each of four
orientations); four were third-order {hy, hx, h

p
, hu},

which captured correlations among three checks, in
each of four orientations. We first describe sensitivity to
individual statistics, then examine their combinations.

Individual oriented image statistics

Figure 2A shows, for each of the four second-order
statistics, psychometric functions that quantify the
subjects’ ability to segment a target by discriminating
various pairwise correlation strengths from random
noise. Thresholds were lower for the two cardinal
directions (b_, bj) than for the two oblique directions
(b\, b/), but there was little difference between the two
directions within each category or between positive and
negative excursions. These findings held across the
N¼ 6 subjects. The (geometric) mean threshold for
cardinal directions was 0.286 (0.258 to 0.316, 95%
confidence limits via t test on log thresholds); for
oblique directions it was 0.402 (0.362 to 0.446). This
difference was highly significant (p , 0.001, two-tailed
paired t test on log thresholds). Note that the cardinal
and oblique statistics do not differ merely in orienta-
tion: b_ and bj describe the correlation between checks
that share an edge, while b\ and b/ describe the
correlation between checks that share a corner. For
either kind of image statistic, thresholds across subjects
varied by only 10% (standard deviation from the mean
on a log scale).

There were no significant differences between the
two cardinal directions or between the two oblique
directions (either for positive or negative excursions),
or between positive and negative excursions in any
direction (p . 0.05). There were no systematic
differences in performance in the conditions in which
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the target was random and the background was
structured versus conditions in which the target was
structured and the background was random. There also
was no consistent difference in performance for any of
the four target positions.

Figure 2B shows psychometric functions for the
third-order statistics obtained by these subjects.
Thresholds for the three examples tested (hy, hx, h

p
)

were not significantly different (p . 0.05 for pairwise
comparisons of any two of the h’s, in either positive or
negative excursions); h

q
was only tested in pilot fashion.

However, there was a consistent difference between
positive excursions (images with white triangular
regions) and negative excursions (images with black
triangular regions): Positive excursions had a slightly
lower threshold (p ’ 0.05 for hy, p , 0.005 for hx, p ,
0.1 for h

p
, and p , 0.01 when pooled). Across subjects,

the threshold for positive excursions was 0.767 (0.663 to
0.887) and for negative excursions, 0.847 (0.721 to
0.995). This corresponds to a variation between subjects
of 15% (standard deviation on a log scale).

In sum, subjects are sensitive to individual image
statistics that carry second- and third-order orientation
information. Across subjects, thresholds were highly
consistent, varying by no more than 15% about the
mean. Sets of statistics that were equivalent under
rotational transformations had indistinguishable
thresholds {b_, bj}, {b\, b/}, and {hy, hx, h

p
}. For

second-order statistics, thresholds for positive excur-
sions (an increase in the number of neighbor-pairs that
match) were indistinguishable from thresholds for
negative excursions (an increase in the number of
neighbor pairs that do not match). For third-order
statistics, thresholds for positive excursions (bright
triangles) were about 10% lower than thresholds for
negative excursions (dark triangles).

Detection based on emergent features?

Because images with high values of one of the third-
order statistics tend to contain large triangular blobs,
one might wonder whether the detection of visual
structure is based on these emergent features. Fur-
thermore, the observation that thresholds for the third-
order statistics are two- to three-fold higher than for
second-order statistics might suggest that this is the
case. Together, these considerations raise the possibility
that detection of visual structure for third-order
statistics is not based on the local statistics per se, but
rather on some mechanism that detects larger features
that emerge when image patches in several local regions
interact in a cooperative fashion.

To test this possibility, we first quantify this co-
operativity via a simple calculation. As described
above, the individual h-statistic, by definition, indicates
the extent to which the texture is enriched with uniform

three-check triangular regions (containing two checks
on a side). The next-smallest triangular region, a six-
check region (three checks on a side), contains within it
three overlapping examples of the three-check triangle.
Because the six-check triangle contains three instances
of the three-check triangle (and therefore, three
independent instances in which the h-bias is applied),
the extent to which there is an enrichment of six-check
triangles is given by h3. Similarly, a 10-check triangle
(four checks on a side) contains six instances of the
three-check trial, and therefore six independent appli-
cations of the h-bias, and is enriched by h6. These
accelerating functions quantify the presence of trian-
gles: For values of h near zero, they are no more
frequent than chance; as h approaches�1 or þ1, their
frequency increases rapidly. Thus, if detection is based
on these features, the transition from subthreshold to
suprathreshold is expected to be more rapid than if
detection is based on a feature whose presence is merely
proportional to h. The rapidity of this transition is
quantified by the Weibull exponent in Equation 1: If
detection is based on a feature whose presence grows
like hp rather than h, then the Weibull exponent (for
fraction correct as a function of x¼jhj in Equation 1) is
expected to be p times higher:

FCðhÞ ¼ 1

4
þ 3

4

�
1� 2�ðjhj

p=aÞb
�

¼ 1

4
þ 3

4

�
1� 2�ðjhj=a

0Þbp
�

ð7Þ

Thus, the Weibull exponent provides an index of co-
operativity, and we can use it to determine the extent to
which there is evidence for cooperative processing of
the third-order statistics.

Results of this analysis are shown in Table 1. We use
the Weibull exponents for second-order statistics as a
baseline, since it is well-established that local second-
order statistics are readily detected (e.g., Graham, 1989;
Graham, Beck, & Sutter, 1992). Interestingly, there is
subject-to-subject variability in the Weibull exponent,
but within subject, the average Weibull exponent for
second- and third-order statistics do not differ from
each other by more than 30%. Averaged across
subjects, the exponents for third-order statistics are
higher, but only marginally so (11% higher, p ’ 0.05,
one-tailed paired t test, N¼ 6). This is in contrast with
the several-fold change in the exponent that would be
expected if detection of structure was based on
cooperative interactions of local statistics.

Pairs of oriented image statistics

The above results show that the statistical structure
in textures defined by single second- and third-order
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image statistics is readily detected, but does not provide
insight into whether the detection is mediated by
oriented or nonoriented (Motoyoshi, Nishida, Sharan,
& Adelson, 2007) mechanisms. In principle, non-
oriented mechanisms could detect structure in a texture
characterized by the third-order statistics considered
here, since when filtered at a scale comparable to the
triangular ‘‘blobs,’’ these textures yield luminance
distributions that are skewed. However, these two
possibilities—detection by nonoriented versus oriented
mechanisms—yield contrasting predictions for textures
defined by pairs of statistics. This motivates the analysis
below, where we examine how threshold depends on
the relative orientation and sign of two image statistics.

To see why these alternatives make contrasting
predictions, consider an image characterized by a pair
of statistics that differ by orientation and also in sign,
such as hy ¼ 0.4 and hx ¼�0.4. If these statistics are
processed in a completely pooled fashion (as would be
the case if the underlying mechanisms had no
orientation tuning), then the image would be difficult to
distinguish from a random one. This is because the two
image statistics have magnitudes that are equal but are
opposite in sign. (For further discussion specific to the
Motoyoshi et al., [2007] model, see Discussion). On the
other hand, if the two image statistics are processed
independently (as would be the case if there are
multiple mechanisms, each with its own orientation
tuning), then the image would be readily discriminable
from a random image, since cancellation would not
occur. Thus, testing thresholds for a combination of
image statistics that differ in orientation and sign will
determine if the image statistics are processed in an
orientation-specific way: If processing is pooled across
orientations, there will be cancellation; if processing is
orientation-specific, cancellation need not occur. A
useful control for this analysis is the companion image
in which the same two statistics have the same sign:
This will not result in cancellation even if the statistics
are processed in a pooled fashion.

Based on this rationale, we examined segmentation
thresholds for image patches defined by a pair of
statistics, with specific attention to comparisons be-
tween images in which the texture statistics had the
same sign versus the opposite sign. We use this to
calculate a ‘‘pooling index’’ Ipool for any two image
statistics, which compares the same-sign thresholds
(hþ,þ and h�,�) to the opposite-sign thresholds (hþ,� and
h�,þ):

Ipool ¼
hþ;� þ h�;þ
hþ;þ þ h�;�

: ð8Þ

Ipool ¼ 1 means that the combination thresholds are
the same, whether the statistics are present with the
same sign or opposite sign, indicating independent
processing (a lack of cancellation). Ipool . 1 means that
some cancellation has occurred. Ipool ¼ ‘ means that
cancellation is complete (i.e., opposite-sign thresholds
are infinite, and any potential orientation information
is lost).

Second-order statistics

Results for pairwise combinations of the second-
order orientation statistics are shown in Figure 3. For
the combination of statistics representing pairwise
correlation in the two cardinal directions (b_ and bj),
the results are particularly simple (Figure 3, first row):
Thresholds are nearly identical whether they are
combined with opposite sign or with the same sign.

Correspondingly, Ipool is very nearly 1 (Ipool ranges
from 0.97 to 1.21 for individual subjects, Ipool ¼ 1.09
from harmonic means, N ¼ 6, Figure 6, below).

For the pair consisting of one cardinal and one
oblique second-order statistic (b_ and b\, second row of
Figure 3), the individual thresholds are different (as
expected from Figure 2A), but again thresholds for the
combination are independent of whether the signs are

Subject

Second-order statistics Third-order statistics

(b_, bj) (b_, b\) (b\, b/) Geometric mean (hy, hx) (hy, h
p
) Geometric mean

MC 2.35 2.82 2.54 2.56 2.09 2.54 2.31

DT 2.78 2.96 3.14 2.95 3.28 3.49 3.38

JD 3.00 3.65 3.50 3.37 4.55 4.21 4.37

DF 2.83 2.81 2.71 2.78 3.33 3.13 3.23

KP 2.83 3.42 3.23 3.15 3.06 3.27 3.16

TT 2.92 2.89 2.72 2.84 3.42 3.41 3.41

Geometric mean 2.78 3.08 2.95 2.93 3.21 3.30 3.25

Table 1. Comparison of Weibull exponents for second- and third-order statistics. Notes: For each subject, the overall Weibull
exponents (see Methods) obtained from experiments based on pairs of parameters drawn from a single order are combined
(geometric mean) to determine an overall exponent for each order. The Weibull exponents for third-order statistics are slightly
(;11%) higher than for second-order statistics ( p ’ 0.05, one-tailed paired t test, N ¼ 6).
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opposite or the same (Ipool ranges 1.03 to 1.11, mean¼
1.06, Figure 6, below).

The final pairing of second-order statistics, b\ and b/,
elicits a different behavior. In contrast to the above two
cases, the isodiscrimination contours are not aligned
with the coordinate axes—instead, they are tilted, with
the long axes extending into the quadrants in which b\

and b/ have opposite signs (Figure 3, third row). The
tilt means that thresholds for the combinations with
opposite sign are higher than for combinations with the
same sign (Ipool ranges from 1.34 to 2.10, mean¼ 1.62,
N ¼ 6, Figure 6, below).

The isodiscrimination contours for the pairing of b\
and b/ show a small but consistent deviation from the
elliptical shape: Thresholds when both statistics are

negative are lower than when both statistics are positive
(blue arrow in Figure 3, bottom row). This deviation
was seen, with varying degrees of prominence, in all six
subjects. Interestingly, the images defined by b\ , 0 and
b/ , 0 have the appearance of a maze, with many
corners oriented along the cardinal axes (see region
inside the blue arc in Figure 3, bottom row). But even
though this quadrant of the space ( b\ , 0 and b/ , 0)
has ‘‘corners,’’ its degree of statistical structure is
identical to what is present in the other quadrants of
the space (i.e., b\ . 0 or b/ . 0 or both (Victor & Conte,
2012). Thus, the lower thresholds indicate that pairings
of second-order statistics that produce corners are
processed more efficiently than other second-order
pairings.

Combined
Background
structured

Target
structured

|

\ 

/ 

\ 

DTMC JD KP TT MeanDF

Figure 3. Isodiscrimination contours for pairs of second-order statistics. The image at the left of each row shows the gamut of images

that can be constructed with each pair of statistics. The random texture (the origin) is at the center of each gamut; image statistics

increase with as distance from the origin grows and the ends of the axes correspond to values of 61. The polar plots are

isodiscrimination contours, i.e., the location in the gamut at which criterion performance (fraction correct¼ 0.625) was obtained, in

each of eight directions (along each axis and along diagonals). Each colored trace corresponds to a separate subject; the black trace is

the harmonic mean across subjects. The first column of polar plots was determined from all trials; the second column was determined

from the half of the trials in which the background was structured according to the image statistics and the target was a random

patch; the third column was obtained from the other half of the trials, in which the target was structured according to the image

statistics and the background was a random patch. The isodiscrimination contours are generally circular or elliptical, but there is a

consistent flattening for the (b\, b/)-pair, when both statistics are negative (blue arrow, lower row). This corresponds to the region of

the gamut in which corners are present (rounded square, gamut). For all pairs of second-order statistics, there is little dependence on

whether the background or the target was structured. N ¼ 6.
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For all of the pairwise combinations of the second-
order statistics, there was no consistent difference
between conditions in which the target was random and
the background was structured versus conditions in
which the target was structured and the background
was random (second and third columns of Figure 3).

Third-order statistics

Figure 4 shows a parallel set of results for pairings of
third-order statistics. Since all four third-order statistics
are aligned with the cardinal axes, there are two cases
to consider: statistics that differ by 908 from each other
(top row: hy and hx), and statistics that differ by 1808
from each other (bottom row: hy and h

p
). In contrast

to the findings for pairwise interactions of second-order
statistics, thresholds are markedly elevated when the
two statistics have opposite signs versus when they are
the same. Correspondingly, Ipool ranged from 1.60 to
2.55 for individual subjects (mean ¼ 2.05, N ¼ 6) for
statistics that differ by 908, and from 1.15 to 1.74 (mean
¼ 1.45, N¼ 6) for statistics that differ by 1808 (Figure 6,
below).

For these image statistics, threshold depended on
which component of the stimulus contained the
statistical structure—i.e., whether the background was
structured and the target was random (second column
of Figure 4), or, alternatively, the target was structured
and the background was random (third column of

Figure 4). Cancellation occurred primarily in the latter
case. This is clearest for the statistics that differ by 1808
(hy, h

p
): Ipool ranged from 1.54 to ‘ for individual

subjects (mean¼ 2.60) when the target was structured,
but was 0.90 to 1.27 (mean ¼ 1.12) when the
background was structured. Note that for two subjects,
Ipool¼‘ in the structured-target condition. That is, for
these individuals, thresholds were too high to measure
reliably when image statistics had equal and opposite
signs, implying nearly complete cancellation. No such
cancellation occurred when the statistical structure was
in the background, or when image statistics had the
same sign. Across subjects, Ipool for the two kinds of
conditions (structured target vs. structured back-
ground) differed by approximately a factor of two for
third-order statistics; for the second-order statistics, the
difference was less than 30% (Figure 6).

In sum, pairwise interactions of third-order statistics
differ in two ways from pairwise interactions of second-
order statistics: Cancellation for statistics that differ in
orientation and have opposite sign is more prominent,
and thresholds depend on whether the statistically
structured region is the target versus the background.

Mixed orders

The survey of interactions between pairs of oriented
image statistics is completed in Figure 5, which shows
the interactions between oriented image statistics of

Figure 4. Isodiscrimination contours for pairs of third-order statistics. As in Figure 3, the image at the left of each row shows the

gamut of images for each pair of image statistics, and the polar plots are isodiscrimination contours, i.e., the location in the gamut at

which criterion performance was reached. For other plotting conventions, see Figure 3. Note that for the pair (h
p
, hy), there is a

strong dependence on whether the structured component of the stimulus was the background (near-circular contours, second

column) versus the target (elongated contours, third column). N ¼ 6.
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different orders. There are three cases to consider.
When the second-order statistic is oriented in a cardinal
direction, it is necessarily aligned with one of the
‘‘arms’’ of the third-order statistic, no matter which
third-order statistic is chosen. So all of the eight
possible pairings of one cardinal b (b_ or bj) with one of
the h’s are identical, other than a rotation or a
reflection. Since we found no significant differences
between the individual statistics that differ solely by a
rotation, we focused on one example, (b_, hy) (first row
of Figure 5).

The other two cases to consider involve a pairing of a
second-order statistic oriented in an oblique direction
with one of the h’s (say hy). The two cases differ
according to whether the second-order statistic involves
the vertex of the y (i.e., b\, hy), or alternatively, it spans
across the vertex (i.e., b/, hy). These cases are shown in
the last two rows of Figure 5.

The three cases have several features in common.
First, threshold does not depend on whether the
structured region is the background versus the target.
Second, the isodiscrimination contours are largely

aligned with the coordinate axes, indicating that the
interactions between the statistics is small. But inter-
estingly, these small interactions are consistent: All
isodiscrimination contours are slightly tilted into the
quadrant in which the image statistics share the same
sign. Correspondingly, the value of Ipool is slightly less
than 1: 0.90 for (b_, hy), 0.81 for (b\, hy), and 0.77 for
(b/, hy) (means across N ¼ 4 subjects, range 0.73 to
0.96). In qualitative terms, the tilt of the isodiscrimi-
nation contour translates into the statement that
detection of pairwise correlation (b . 0) is slightly
enhanced in the context of large dark regions (h , 0),
and detection of pairwise anticorrelation (b , 0) is
slightly enhanced in the context of large bright regions
(h . 0), independent of their relative orientations.

Combinations of four oriented image statistics

To determine whether the interactions between pairs
of oriented image statistics can account for the way that
orientation statistics are processed in a more general

_|

\ 

_|

/ 

_|

DTMC JD MeanDF

Combined
Background
structured

Target
structured

Figure 5. Isodiscrimination contours for mixtures of second- and third-order statistics. As in Figure 3, the image at the left of each row

shows the gamut of images for each pair of image statistics, and the polar plots are isodiscrimination contours, i.e., the location in the

gamut at which criterion performance was reached. For other plotting conventions, see Figure 3. Isodiscrimination contours are

approximately elliptical, with the short axis along the b-axis, and the long axis along the h-axis, corresponding to the lower thresholds

for b than for h (see Figure 2). There is little dependence on whether the background or the target was structured. N ¼ 4.
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context, we measured thresholds for selected combi-
nations of four image statistics. In view of the
contrasting way that second- and third-order statistics
interacted amongst themselves, we considered images
that were specified by multiple statistics of the same
order. To emphasize the distinction between indepen-
dent and pooled processing, we focused on images in
which all four values of the b’s, or all four values of the
h’s, had the same magnitude but might differ in sign.
For independent processing, thresholds would be
independent of sign. For pooled processing, thresholds
would be markedly increased when statistics had
opposite signs, because their influences would cancel.
We first consider the experimentally-determined
thresholds, and then the predictions of models based on
pooled processing, independent processing, and an
intermediate scenario.

Results for the second-order statistics are shown in
Figure 7A, for two experienced subjects and one novice
(DC). We found that the thresholds for stimuli with
opposite-sign b’s (filled circles) differed from the
thresholds with same-sign b’s, but the difference was
modest. When the cardinal b’s (b_, bj) were positive and
the oblique b’s (b\, b/) were negative, the thresholds
ranged from being the same as that of the same-sign
b’s, to somewhat lower (range of ratios, 0.76 to 0.99).
When the cardinal b’s (b_, bj) were negative and the
oblique b’s (b\, b/) were positive, the thresholds ranged
from being similar to that of the same-sign b’s, to
moderately higher (range, 1.00 to 1.74). In contrast, for
the third-order statistics, thresholds with opposite-sign
h’s were almost threefold higher than for same-sign
thresholds (range, 2.62 to 2.95). There was virtually no
difference between thresholds with all-positive h’s and
all-negative h’s (ratio range, 0.94 to 1.03).

Thus, in qualitative terms, the findings for the
pairwise combinations extend to more complex com-
binations: For combinations of third-order statistics,
thresholds depend markedly on whether the statistics
have the same sign or opposing signs; for combinations
of second-order statistics, this dependence is more
modest.

To determine whether the findings for pairwise
combinations extend to the four-parameter combina-
tions in a quantitative way, we consider three models:
two models formalize the extremes of sign-dependent
and sign-independent interactions, and a third model
formalizes an intermediate scenario. In each model, the
image statistics combine to form a decision variable,
and threshold is reached when the decision variable
reaches a criterion magnitude (see Methods).

Complete pooling model

To model strongly sign-dependent interactions, we
consider a scenario in which image statistics are
completely pooled—that is, a model in which the
decision variable is simply the linear sum of image
statistics. Using ck to represent individual image
statistics (for mixtures of second-order statistics, c1 ¼
b_, c2 ¼ bj, c3¼ b\, and c4 ¼ b/; for mixtures of third-
order statistics, c1¼ hy, c2 ¼ hx, c3 ¼ h

p
, and c4 ¼ h

q
)

and qk to represent the sensitivity to the statistic ck, this
model states that threshold is reached when

X
k

qkck

�����
����� ¼ 1: ð9Þ

For the image statistics considered here, the model
can be simplified based on the experimental findings
presented above. For second-order statistics, the
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Figure 6. Pooling indices. The pooling index (Equation 8) describes how a pair of image statistics interact: It is the ratio of the

thresholds when they have opposite signs, to when they have the same sign; values larger than one indicate cancellation in the

opposite-sign condition. For individual subjects, pooling index is calculated from all trials. For the group means, the pooling index is

calculated from all trials (solid bar), and for the subsets of trials separated according to whether the background was structured or

the target was structured. N ¼ 6 for pairings within order (second- or third-order), N ¼ 4 for pairings between orders.
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thresholds for b_ and bj were statistically indistin-
guishable, so they can be set to the same common
value, qcard. Similarly, the sensitivities for b\ and b/ were
indistinguishable, and we set them to the common
value, qobl. With these substitutions, Equation 9
simplifies to

qcardðb þ bjÞ þ qoblðb\ þ b=Þ
��� ��� ¼ 1: ð10Þ

For third-order statistics, the sensitivities for the
three measured h’s (hy, hx, h

p
) are indistinguishable,

and we assume that the threshold for h
q
shares the

same value, which we designate by qh. So for third-
order statistics, Equation 9 simplifies to

qh hy þ hx þ hp þ hqj j ¼ 1: ð11Þ
Equations 10 and 11 make predictions for the

thresholds for the stimuli shown in Figure 7, by
assigning the b’s or the h’s to common multiples of 61.
For example, to determine the model’s predicted
threshold Tþþþþ for a mixture of all positive b’s, we set
b_ ¼ bj ¼ b\ ¼ b/ ¼ Tþþþþ in Equation 10, to find that

Tþþþþ ¼
1

2ðqcard þ qoblÞ
: ð12Þ

Similarly, to determine the predicted threshold Tþ�þ�
for a mixture of positive cardinal bs and negative
oblique b’s, we set b_¼bj ¼Tþ�þ� and b\¼ b/¼�Tþ�þ�
in Equation 10, to find that

Tþ�þ� ¼
1

2ðqcard � qoblÞ
; ð13Þ

which is much larger than Tþþþþ. These values are
plotted in Figure 7A (downward triangles). As is
shown, they are at odds with the measured thresholds:
The measured same-sign thresholds are larger than
predicted by the pooled model, and the opposite-sign
thresholds are much smaller than predicted. For the
third-order statistics, on the other hand, the model is at
least qualitatively consistent with experimental findings
(Figure 7B). For same-sign h’s, the predicted threshold
(from Equation 11, by taking hy¼hx¼h

p
¼h
q
¼Tþþþþ)

is (1/4qh). This modestly underpredicts the experimental
threshold. For opposite-sign h’s, the predicted thresh-
old is infinite, since when the h’s have opposite signs in
pairs, hyþhxþh

p
þh
q
¼0. Measured thresholds are in

fact infinite in some subjects, and in others, it is close to
the maximal value that could be measured (Figure 4). In
sum, the complete pooling model fails dramatically to
predict the measured thresholds for combinations of

Figure 7. Thresholds for four-component mixtures of second-order statistics (A) and third-order statistics (B), and comparison with

model predictions. Measured thresholds (solid symbols) are shown for each kind of mixture; these are compared with predictions

based on independent processing of each statistic (upward triangle), complete pooling (downward triangle) and the ellipse model

(bars). Predicted thresholds exceeding 1 (which is outside of the gamut) are plotted at 1. Since subject DC did not participate in

experiments in which thresholds for pairs of image statistics were measured, the interaction parameters were determined either from

subject MC (left open bar) or DT (right open bar); see text for further details. Example images, shown above each set of measured

thresholds, have 32 · 32 checks, and are constructed with all image statistics set to 60.225.
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second-order statistics (it predicts a large dependence
on relative sign, when the data show only modest sign-
dependence). For third-order predictions, the failure is
only a quantitative one, as the predicted large sign-
dependence is in fact observed.

Independent processing model

To model sign-independent interactions, we posit
that there are separate channels for each image statistic,
and that the decision variable corresponds to the total
energy across channels. Again using ck to represent
individual image statistics and qk to represent the
sensitivity to the statistic ck, this model states that
threshold is reached whenX

k

ðqkckÞ2 ¼ 1 ð14Þ

(see also Methods, Equation 6). Because of the
similarity of the thresholds for the two cardinal b’s, the
two oblique b’s, and the h’s, this equation reduces to

q2card ¼ ðb2 þ b2
j Þ þ q2oblðb2

\ þ b2
=Þ ¼ 1 ð15Þ

for mixtures of second-order statistics and

q2h

�
h2
y
þ h2

x
þ h2

p
þ h2

q

�
¼ 1 ð16Þ

for mixtures of third-order statistics. As expected, the
form of Equations 15 and 16 shows that the
independent-processing model predicts thresholds for
mixtures that are independent of whether the statistics
have the same sign, or opposite signs.

These predictions are compared with the measured
thresholds in Figure 7 (upwards triangles). For second-
order statistics, the predictions of Equation 15 are
reasonably close to the measured thresholds (within
20% for subjects MC and DT, but approximately a
50% deviation for one of the combinations for subject
DC.) For third-order statistics, the deviations are
larger: up to a factor of two between the predictions of
Equation 16 and measured values (Figure 7B). In both
cases, the reason for the mismatch between the
independent model and the data is that the independent
model predicts that thresholds do not depend on
whether the image statistics have the same sign. For the
second-order statistics, the measured sign-dependence
is, in fact, small (Figure 3), but for third-order statistics
(Figure 4) thresholds are substantially higher when
signs are opposite than when signs are the same.

An intermediate scenario

The previous two sections showed that both the
complete-pooling model and the independent-process-
ing model fail to account for the observed thresholds

for four-component mixtures, but they fail in very
different ways: The complete-pooling model fails
severely for second-order statistics, while the indepen-
dent model fails severely for third-order statistics. Since
these two models are at opposite ends of the spectrum,
these failure modes suggest that a model that is
intermediate between complete pooling and indepen-
dent processing may capture the main features of the
threshold data for the four-component mixtures.

The intermediate model posits a quadratic combi-
nation rule for the individual image statistics, but
allows for interactions between them. In geometric
terms, this is equivalent to assuming that the threshold
isodiscrimination surface is an ellipsoid (analogous to
the Macadam ellipsoids used to quantify color dis-
criminations; Macadam, 1942; Poirson et al., 1990).
The intersection of this ellipsoid with each coordinate
plane is, necessarily, an ellipse. Finding the parameters
of the ellipsoid amounts to adjustment of the in-plane
ellipses so that they match the isodiscrimination
contours determined in the pairwise-interaction exper-
iments (Figures 3, 4, and 5). In this geometric view, a
four-component mixture corresponds to a ray whose
direction is determined by the proportions of the four
image statistics. The model’s prediction for the
threshold for this mixture is the point at which this ray
pierces the 4-dimensional isodiscrimination ellipsoid.

Thresholds predicted by these models are indicated
by the horizontal bars in Figure 7. Most predicted
thresholds are within 20% of their measured values, and
many are within 10%. For both second-order (panel A)
and third-order (panel B) mixtures, the ellipsoidal
model captures the qualitative features of the measured
thresholds. For the second-order mixtures, the model
correctly predicts that the threshold for the all-positive
b-condition is intermediate between the predictions of
the pooled model and the independent model. For the
condition in which the cardinal b’s are positive and the
oblique b’s are negative, it correctly predicts thresholds
that are lower than both the pooled and independent
model. For the condition in which the cardinal b’s are
negative and the oblique b’s are positive, it correctly
predicts thresholds that are close to, but somewhat
higher than, the thresholds predicted by the independent
model. With the exception of the all-positive b condition
for subject DT, where there is a 50% deviation, all
thresholds are correctly predicted within 20%, and
many within 10%. A similar level of agreement is seen
for the mixtures of third-order statistics (panel B): For
same-sign h’s, the threshold values are correctly
predicted at values intermediate between the predictions
of the pooled and independent models. For opposite-
sign h’s, the ellipsoid model predicts that thresholds are
too high to measure; the experimental data show that
they are much higher than for the same-sign h’s, but
close to the limits that can be measured.
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Discussion

The broad motivation for this study is to understand
how local orientation information is analyzed. The
importance of extracting local orientation for early
visual processing is obvious and well-recognized, but
the problem is also a complex one. The reason is that
there are many kinds of cues to orientation: Orienta-
tion can be signaled not only by positive pairwise
correlations (as is the case for lines and gratings), but
also by negative pairwise correlations, and by multi-
point correlations of any order. Even at a single
location, different kinds of cues can coexist, and more
than one orientation can be present. Thus, to under-
stand how local orientation is processed, it is necessary
to determine the sensitivity of the visual system to these
different kinds of cues, and how they interact.

To begin to approach this problem, we developed a
space of binary texture stimuli that contain two different
kinds of orientation cues—a ‘‘second-order’’ cue, akin
to what is present in gratings, and a ‘‘third-order’’ cue
that is not present in visual stimuli that are routinely
studied. (As mentioned above, we use the term ‘‘order’’
in its mathematical sense—the number of image points
that must be simultaneously inspected to detect the cue.)
Each of these kinds of cues can be introduced with either
positive or negative sign, and with graded strength,
independently and at any of four orientations (Victor &
Conte, 2012). The stimulus space is ‘‘calibrated’’: The
statistical strength of each cue is equally strong and
independent of sign, and each of the cues is independent.
That is, for the ideal observer, the isodiscrimination
contours are spheres centered at the origin, and their
intersection with each of the coordinate planes are
identical circles. This setup enables measurement of
visual sensitivity to positive and negative variations of
each statistic and to their combinations and comparison
of these sensitivities on an equal footing (namely, with
reference to that of the ideal observer).

For human subjects, a relatively simple picture
emerges, but one that differs in several respects from
that of an ideal observer. These differences were present
both with regard to sensitivities to individual statistics,
and their interactions.

For individual statistics (Figure 2), human sensitivity
is selective: For second-order cues, it is two to three
times higher than for third-order cues. Sensitivity to
positive and negative deviations of image statistics was
not significantly different for second-order statistics.
This is noteworthy, as positive deviations correspond to
positive correlations in a particular direction (a stan-
dard orientation cue), while negative deviations corre-
spond to anticorrelations in a particular direction. At
third-order, there were subtle differences in sensitivity
for positive and negative correlations, with sensitivity to
positive correlations (corresponding to white oriented

regions) about 10% greater than sensitivity to negative
correlations (corresponding to black oriented regions).
We emphasize that the positive and negative quantities
considered here are the correlations of image pixels, not
the contrast polarity of the image tokens themselves
(Motoyoshi & Kingdom, 2007).

With regard to how image statistics interact, we
found a difference between second- and third-order
statistics: For third-order statistics, opposite-sign
combinations of statistics at different orientations
resulted in higher thresholds than same-sign combina-
tions (Figure 4); cancellation was much less prominent
for second-order statistics (Figure 3). This indicates
that third-order statistics are processed in a manner
that is more pooled across orientations than second-
order statistics (Figure 6). The gamut from pooling to
independence can be formalized in terms of a quadratic
model of cue combination; this model predicted
thresholds to combinations of four orientated image
statistics, usually within 20% (Figure 7). The analysis
was simplified by the finding (Figure 5) that there was
little interaction between oriented statistics of different
order. Finally, since we used a figure-ground task to
assay sensitivity, we were able to determine whether
image statistics were processed differently when they
defined the target object versus the background. No
such difference was found for second-order statistics
(Figure 3), but for third-order statistics (Figure 4),
pooling across orientation was more prominent within
a target than within the background.

It is worth emphasizing that even though there is
greater pooling across orientations for third-order cues
than for second-order ones, this pooling is incomplete:
Positive orientation signals at one orientation only
partially cancel negative orientation signals at another.
The fact that cancellation is only partial has an
implication for mechanism: Specifically, it rules out the
nonoriented mechanism that Motoyoshi et al. (2007)
proposed to account for perception of some high-order
aspects of texture related to surface qualities. The
Motoyoshi et al. (2007) mechanism consists of an ON
and an OFF pathway, each containing linear circularly-
symmetric center-surround filters. The outputs of these
filters are processed by a strong rectifying nonlinearity,
and the spatially pooled outputs of these nonlinearities
are compared to yield an estimate of the skewness of
the luminance distribution of the original image, or of a
linearly-filtered transformation of it. However, this
kind of mechanism cannot account for detection of
structure in images based on two opposite-signed h-
statistics, because—as we show below—such stimuli
must generate an equal and symmetric distribution of
signals in the ON and OFF pathways.

To see that this is the case, we apply a symmetry
argument to the texture T in which hy and hx (a pair
that differ by 908) are present with equal magnitudes
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but opposite signs. Since the ON filters of Motoyoshi et
al. (2007) are circularly symmetric, they must yield the
same distribution of responses x from this texture, and
from the left-right mirror reflection of it, i.e.,
pON
T (x) ¼ pON

mirrorðTÞ(x). Since hy and hx carry opposite
signs, this left-right reflection—which interchanges one

statistic with the other—inverts each of their values.
Sign-inversion of the hs is equivalent to exchanging
black for white (contrast inversion). Since the filters are
assumed linear, contrast inversion of the image
(consequent to exchanging T for its mirror) results in
an inversion of the distributions of signals that emerge
from the filters, so pON

mirrorðTÞ(x)¼ pON
T (�x). Combining

pON
T (x) ¼ pON

mirrorðTÞðxÞ with pON
mirrorðTÞ ¼ pON

T (�x) yields
pON
T (x) ¼ pON

T (�x). Similarly, for the OFF pathway,

pOFF
T (x)¼ pOFF

T (�x). Thus, prior to the nonlinearity, the
signals on both ON and OFF pathways are even-
symmetric (and consequently, have no skewness).
Moreover, the distributions of signals on the ON and
OFF pathways are identical, since linearity requires
that pON

T (�x) ¼ pOFF
T (x). This means that opponent

processing must lead to a null signal, regardless of an
intervening nonlinearity prior to pooling.

For a pair of h-statistics that differ by 1808 (such as
hy and h

p
), a similar argument holds, based on a 1808

rotation of the texture, rather than a mirror flip.

Possible physiologic basis

To address the physiologic basis of the psychophys-
ical findings reported here, the first consideration is that
for the ideal observer, each image statistic is independent
and equally informative. Since all the stimulus checks
are all readily visible (14 min checks, 1.0 contrast), the
selective sensitivity we observe must reflect the properties
(i.e., the limitations) of neural processing.

The second-order statistics are readily detected by
linear filters, since pairwise correlations directly affect the
spatial-frequency content of the stimulus. Thus, oriented
linear filters—a fundamental component of standard
models of V1 neurons (Rust & Movshon, 2005)—suffice
to extract second-order cues. However, third-order
statistics do not influence pairwise correlations, and
therefore do not influence the average responses of such
linear filters. Simple rectification (Victor & Conte, 1991)
does not account for their perceptual salience, and since
power is not influenced by third-order statistics, overall
gain controls cannot have a significant effect. However,
it is likely that actual V1 neurons (in contrast to models
of them) can extract this kind of orientation information:
A fraction of V1 neurons demonstrate orientation-
selective responses to images containing third-order
orientation cues (Victor, Yu, Schmid, Hu, & Mechler,
2011). This meshes with the inference (see Table 1) that
the psychophysical findings reported here result from

local processing, rather than identification of emergent
or large-scale structure. Not surprisingly, and in line with
the results reported here, neural sensitivity to oriented
third-order statistics was found to be substantially less
than to second-order statistics.

The neural mechanisms that may underlie sensitivity
to combinations of orientation cues are less-well studied
and are restricted to combinations of simple cues.
Neurophysiological studies suggest that interactions
between orientation cues are not prominent, and when
present, can be accounted for by a gain control or
suppression by non-preferred orientations. In macaque
V2, a systematic study of neuronal responses to pairs of
line tokens (Ito & Komatsu, 2004) showed that
approximately a quarter of neurons respond selectively
to orientation pairs. In these cells, the interactions
between orientations (Ito & Goda, 2005) could be
accounted for by linear summation of signals from each
of the tokens, along with a suppressive signal from
nonpreferred orientations. No corresponding study
appears to have been carried out in V1, but the presence
of strongly-tuned surround suppression (Das & Gilbert,
1999) in some neurons may lead to a phenomenological
interaction between orientations. Moreover, computa-
tional modeling of how multiple orientation cues are
combined and represented are largely unexplored, as
studies have focused on how a single orientation is
determined from the activity of a population of neurons
(Deneve, Latham, & Pouget, 1999; Series, Latham, &
Pouget, 2004), and these neurons are each considered to
represent only the second-order kind of cue.

Relationship to previous work

Several previous studies have examined sensitivity to
orientation cues beyond those that are present in
ordinary gratings. Most work (Baker & Mareschal,
2001; Landy & Henry, 2007; Landy & Oruc, 2002;
Larsson et al., 2006) makes use of stimuli in which the
presence of a local feature (such as contrast or noise) is
modulated by a grating carrier. These stimuli (tradi-
tionally called ‘‘second-order’’) correspond to fourth-
order stimuli in the current terminology, since in
general, four points are needed to extract the orienta-
tion. As such, while those studies do not make use of
the same kinds of stimuli used here, they demonstrated
that high-order orientation cues are salient and
identified the crucial stimulus characteristics (Landy &
Henry, 2007; Landy & Oruc, 2002). However, these
studies stopped short of determining selectivity com-
pared to that of the ideal observer, or how cues
combine—since it is not obvious how to use those
stimuli to build a ‘‘calibrated’’ space of the sort used
here. It is also worth noting that these higher-order
cues are extracted by V1 neurons (Baker & Mareschal,
2001), and that simple models (consisting of a
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nonlinear subunit followed by an oriented filter) suffice
to account for this. Conversely, the third-order stimuli
used here are well-known (Julesz et al., 1978), but their
capacity to carry orientation information, and their
interaction with simple (i.e., second-order) orientation
cues has not previously been investigated.

Conclusion

The set of statistical features that can carry orienta-
tion information is large and complex and includes
correlations of different signs and orders—which may be
present alone and in combination. To understand how
these cues are processed, we introduced a stimulus set in
which multiple oriented image statistics could be
independently manipulated. A relatively simple picture
of human visual sensitivity emerged: Sensitivity to
positive and negative correlations are approximately
similar; statistics of different orders are processed largely
independently; and within orders, a quadratic combi-
nation rule (with greater cross-orientation pooling of
third-order statistics than of second-order statistics)
accounts for the bulk of the interactions.

Keywords: high-order statistics, visual textures, per-
ceptual metric, corner
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