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Local image statistics are important for visual analysis of textures, surfaces, and form. There are many
kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented
segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much
less is known about visual processing when multiple kinds of statistics are relevant, in large part because
the dimensionality of the problem is high and different kinds of statistics interact. To approach this prob-
lem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps
many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to
each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities
and isodiscrimination contours were consistent across observers. Isodiscrimination contours were ellip-
tical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination sur-
faces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations
of statistics. These predictions, including the prediction of a combination of statistics that was metameric
to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over
the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially
lower at 1.4 min. In sum, local image statistics form a perceptual space that is highly stereotyped across
observers, in which different kinds of statistics interact according to simple rules.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of image statistics underlies many key components
of intermediate visual processing, including not only visual texture,
but also visual characterization of surfaces and segmentation of
images into objects. Although each of these tasks might at first
seem deterministic, each is fundamentally statistical. For example,
identification of surface materials (such as wood, grass, or hair) is
not carried out by matching the image to a stored sample, but
rather, by their image statistics, such as the range of contrasts
and colors and the distribution of oriented contours at different
scales (Karklin & Lewicki, 2009). Segmentation of an image is a sta-
tistical task as well, because it is fundamentally ambiguous: multi-
ple scene interpretations are consistent with a single image, and
image statistics play a key role in assessing which one is chosen
as the most plausible. For example, contours due to a shadow or
change in illumination are not typically coincident with a change
in material properties, while real object boundaries typically have
such changes, and hence, changes in image statistics.

Thus, understanding the processing of image statistics has
broad importance as part of a foundation for understanding many
aspects of intermediate visual processing. Visual textures, the focus
here, present image statistics in their purest form.

While natural textures are characterized by many kinds of sta-
tistical features, systematic approaches to studying visual texture
(with few exceptions (Motoyoshi & Kingdom, 2007; Saarela &
Landy, 2012; Victor, Chubb, & Conte, 2005)) usually explore just
one kind of feature, such as luminance distributions (Chubb,
Econopouly, & Landy, 1994; Chubb, Landy, & Econopouly, 2004),
color (Li & Lennie, 1997), orientation (Landy & Oruc, 2002;
Wolfson & Landy, 1995, 1998), or curvature (Ben-Shahar &
Zucker, 2004). There are two main reasons for this. One is the high
dimensionality of the problem: if all kinds of statistical features
were explored, the number of parameters (i.e., the number of dif-
ferent image statistics) would be impractically large. The other is
that image statistics exhibit a high degree of interdependency.
Edges cannot exist without local changes in luminance, and cor-
ners cannot exist without edges at multiple orientations, so these
statistics cannot be considered to be independent attributes.
Here, we attempt to address both issues, by constructing a texture
space of large but manageable dimension (10), whose coordinates
take into account the interactions implied by geometry. The data
show that once these steps are taken, the perceptual interactions
of image statistics obey simple rules that (a) are highly consistent
across subjects, (b) accurately predict sensitivity to complex
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combinations of image statistics, and (c) are approximately pre-
served across a range of spatial scales.

To overcome the problem of high dimensionality (specifically,
that an image statistic can be defined from the joint probabilities
of any set of gray levels at any configuration of nearby points),
we restricted consideration to black-and-white images on a
checkerboard. By restricting the analysis to a single scale and only
two luminance levels, we can then consider all possible local
images statistics – i.e., the probabilities of all configurations of
black and white checks within a 2 � 2 neighborhood. This set of
image statistics has 10 free parameters (summarized here in
Methods; detailed in (Victor & Conte, 2012)). It encompasses not
only the intuitively-important features of luminance, contrast,
edge, and corner, but also, its four-point correlations are indepen-
dently informative for natural images (Tkačik et al., 2010). Thus,
although it is a reduced space, it has image statistics of many dif-
ferent types and levels of complexity.

To overcome the second hurdle, the interdependency of differ-
ent kinds of stimulus features, we used a ‘‘maximum-entropy’’
approach. That is, we specify stimuli by the prevalence of one or
more elementary features, and then synthesize an ensemble of
images that meet these specifications but are otherwise as random
as possible. This limits the interdependence of features to what is
implied by geometry, so that observed interactions at the level of
neural or perceptual responses can be more readily interpreted.

1.1. Texture space and color space: their geometry and its implications

The above considerations lead to the construction of a ‘‘texture
space’’, in which each point corresponds to a specific combination
of image statistics that together specify luminance distributions and
the prevalence of edges and corners at different orientations (Victor
& Conte, 2012). The experiments presented here determine the per-
ceptual distances in this space, focusing on the region near its origin.

The analogy with trichromatic color space provides a helpful
geometrical framework. In both color space and texture space,
points represent stimuli and the origin represents the neutral point
(in color space, a white light; here, the random texture). The pre-
sent experiments, which consist of measuring thresholds for per-
ceiving that a texture is not random, correspond to measuring
thresholds to changes in color and intensity near the white point.
In both spaces, a line segment space represents mixtures. In color
space, the points on a line segment are the colors that can be cre-
ated by mixing the lights that correspond to the endpoints. In the
space of local image statistics, the points on a line segment are the
textures that can be created by mixing the textures that corre-
spond to the endpoint. In color space, mixtures are created by
physical mixing of lights; here, mixtures are created at the level
of statistics: at the level of the frequency of each way that a
2 � 2 block can be colored with black and white checks (as
described in (Victor & Conte, 2012). In color space and in texture
space, a ray emanating from the origin corresponds to a set of stim-
uli that are progressively more saturated. Thus, determining the
point along this ray that is first discriminable from the origin is a
way of quantifying sensitivity to the combination of features rep-
resented by the direction of the ray. By determining the thresholds
for rays that emanate from the origin in many directions, one can
map out the ‘‘isodiscrimination surface,’’ which summarizes the
perceptual sensitivities in the neighborhood of the origin. In the
case of color space, the isodiscrimination surfaces are approxi-
mately ellipsoids (the ‘‘Macadam ellipses’’ (Macadam, 1942)), and
below we find that this holds in texture space as well.

The notion of navigating the space by moving along a straight
line trajectory brings up an important mathematical distinction
between the geometries of the two spaces. In color space, moving
along a line is straightforward: it corresponds to increasing or
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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decreasing the intensity of a light. For textures, this is not the case.
For example, increasing the number of edges may also increase the
number of intersections, and the proportionality between corners
and intersections is typically nonlinear. These nonlinear dependen-
cies underlie the maximum entropy approach (Victor & Conte,
2012) for navigating the space: a direction in the space corre-
sponds to a specified coordinate, and movement along this direc-
tion may take a curved path to minimize the introduction of
further structure. That is, the maximum-entropy approach yields
a locally flattened coordinate system. Here, since we are studying
discrimination thresholds, we work in these local coordinates,
and ignore the impact of global curvature.

Color space and texture space have other important differences,
and these allow us to interpret the sensitivity measurements in a
way that has no immediate analogy in color space. The differences
go beyond the difference in dimensionality or global curvature,
and trace back to a fundamental difference in the way that the coor-
dinate systems are defined. For color space, the origin of the coordi-
nate system – the white point – is defined subjectively. For image
statistics, the origin of the texture space has an a priori mathematical
definition: it is the texture in which each check is randomly and
independently assigned to black or white. A similar distinction
applies to the axes: for color space, axes are defined empirically
based on cone excitations (MacLeod & Boynton, 1979) or combina-
tions motivated by physiological and psychophysical measurements
(Derrington, Krauskopf, & Lennie, 1984); for image statistics, axes
are defined a priori mathematically, in terms of correlations.

The kind of geometry that applies to the two spaces is also differ-
ent (Zaidi et al., 2013). In color space, any of several coordinate sys-
tems (Derrington, Krauskopf, & Lennie, 1984; MacLeod & Boynton,
1979; Wyszecki & Stiles, 1967), each based on its own set of empir-
ical observations, are equally valid descriptions of the space.
Changing from one set of axes to another is a general linear trans-
formation, which means that distances and angles computed from
the coordinates in one system (via the Pythagorean rule and
dot-products) need not match values computed with another. In
the space of local image statistics, the coordinates are defined by
mathematical considerations. This means that there is a standard
definition of distance, and a ‘‘sphere’’ is a well-defined term: it is
the locus of points that are at an equal distance from its center.

Because of the mathematics underlying the texture-space coor-
dinates, spheres centered at the origin have another interpretation.
Specifically, spheres are the isodiscrimination surfaces for an ideal
observer ((Victor & Conte, 2012), Appendix B), i.e., an observer
who is able to make full use of all image statistics. Of course we do
not anticipate that human performance will resemble this. Rather,
we expect that human observers will be selective, and make use of
some image statistics more efficiently than others. This will distort
the human isodiscrimination surface away from a spherical shape.
For example, if sensitivity is reduced along one axis, then the isodis-
crimination surface will become elongated in that direction, into an
ellipsoid. If sensitivity is different for positive vs. negative changes in
a coordinate, the surface will be asymmetrically distorted (i.e., it will
become egg-shaped). If cues along different coordinates are not
combined, the shape of the isodiscrimination surface will become
squared-off. But as the results show, only the first kind of distortion
is prominent, and this enables a concise, predictively accurate model
for sensitivity to complex combinations of image statistics.
2. Methods

2.1. The stimulus space

The goal of these experiments is to determine visual sensitivity
to local image statistics, individually and in combination. To do
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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this, we use stimuli in which one or more local statistics are spec-
ified, and all other aspects of the image are as random as possible,
subject to these specifications. We consider only binary
(black-and-white) images; for such images, there are 16 ways in
which a 2 � 2 block can be colored ð16 ¼ 22�2Þ. These 16 potential
degrees of freedom are reduced to 10, because the 2 � 2 blocks
must match where they overlap. Here we describe 10 natural coor-
dinates that capture these degrees of freedom, and how they are
combined to generate the stimuli used in the experiments. For a
complete description of the space and details of the algorithms
to construct the stimuli within it, see (Victor & Conte, 2012).

The 10 coordinates each range from �1 to 1, and a completely
random binary image corresponds to a value of 0 for each
coordinate (Fig. 1A). The coordinates fall into four groups, based
on the order of the correlation that they describe. (The ‘‘order’’ of
a correlation means the number of image points that must be
simultaneously considered to determine the correlation’s value.)

There is one first-order coordinate, c. This captures the overall
luminance bias of the image: it is the difference between the
probability of a white check and the probability of a black check.
Thus c = 1 means that all checks are white, c = �1 means that all
checks are black, and c = 0 means that both colors are equally
likely.

There are four second-order coordinates (denoted b , bj, bn, and
b=), each of which describe a two-point correlation at the
Fig. 1. (A) The gamuts of the 10 image statistics. In each case, the coordinate value (ve
Timecourse of a typical trial. Stimuli were typically presented for 120 ms, followed by a ra
target positioned 8 checks away from one of the four edges. Stimuli were of two types:
background with random target. Red rectangles indicate the target, and were not visible d
The Association for Research in Vision and Ophthalmology, from (Victor, Thengone, & Co
reader is referred to the web version of this article.)
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orientation indicated by the subscript. Each is the difference
between the probability that two neighboring checks match (i.e.,
both are white or both are black), and the probability that they
do not match (i.e., one is white and one is black). We use the con-
vention that white checks are denoted by 1, and black checks are
denoted by 0. So for example, b ¼ 1 means that all 1 � 2 blocks
are either ð0 0 Þ or ð1 1 Þ; in such images, horizontal rows will
be either all black or all white, but there will be no relationship
between the colors of adjacent rows. b ¼ �1 means that all
1 � 2 blocks are either ð0 1 Þ or ð1 0 Þ and none are ð0 0 Þ or
ð1 1 Þ; in such images, horizontal rows will have alternating black
and white checks. Intermediate values of b indicate a bias toward
matching neighbors (positive values) or mismatching neighbors
(negative values), and b ¼ 0 means that matching and mismatch-
ing neighbors are equally likely. Similarly, bj, bn, and b= describe the
two-point correlations in the vertical and two diagonal directions.
Note that for b and bj (which we call the ‘‘cardinal’’ b’s), the two
checks involved in the correlation are abutting – so b and bj con-
trol the frequency of edges. In contrast, for bn, and b=, (which we
call the ‘‘diagonal’’ b’s) the involved checks only share a common
vertex. Thus, we may anticipate that there are differences between
the visual impact of the cardinal b’s and the diagonal b’s. These dif-
ferences need not be related to the classical oblique effect (Doi,
Balcan, & Lewicki, 2007) – since they describe different kinds of
correlations, not merely correlations that differ by a rotation.
rtical scale) indicates the correlation strength, which can range from �1 to 1. (B)
ndom mask. (C) The stimulus was a 64 � 64 array of checks that contained a 16 � 64
top, random background with structured target (here, hy ¼ 1), or bottom, structured
uring the trials. Panels B and C reproduced, with permission of the copyright holder,
nte, 2013). (For interpretation of the references to colour in this figure legend, the
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http://dx.doi.org/10.1016/j.visres.2015.05.018
http://dx.doi.org/10.1016/j.visres.2015.05.018


4 J.D. Victor et al. / Vision Research xxx (2015) xxx–xxx
Next, there are four third-order coordinates, hy, hx, hp, and hq.
Each quantifies a three-point correlation within an L-shaped
region, by comparing the probability that the region contains an
even number of white checks, vs. an odd number of white checks.
A value of +1 means that only an odd number of white checks (one
or three) are present. For example, hx ¼ 1 means that only the con-

figurations 1
1 1

� �
, 1

0 0

� �
, 0

1 0

� �
or 0

0 1

� �
are present;

this will lead to images with prominent white triangular-shaped
regions pointing downward and to the left. hx ¼ �1 means that

only the complementary configurations 0
0 0

� �
, 0

1 1

� �
,

0
0 1

� �
or 1

1 0

� �
are present; these images have prominent

black triangular-shaped regions.
The final coordinate, a, quantifies the four-point correlation

among the checks in a 2 � 2 block: a = 1 means that an even num-
ber of them are white, and a = �1 means that an odd number are
white. This is the same image statistic that has been the subject
of much previous work (Julesz, Gilbert, & Victor, 1978; Victor,
Chubb, & Conte, 2005; Victor & Conte, 1989, 1991, 1996, 2004).

Together, the ten coordinates fc; b ; bj; bn; b=; hy; hx; hp; hq;ag fully
specify the distribution of colorings in 2 � 2 blocks.

2.2. Stimuli

All experiments used the texture segmentation paradigm
(Fig. 1B and C) first developed by Chubb and coworkers for the
study of textures in which each check’s luminance is indepen-
dently chosen from the same distribution (Chubb, Landy, &
Econopouly, 2004), and later used for correlated textures (Victor,
Chubb, & Conte, 2005; Victor & Conte, 2012; Victor, Thengone, &
Conte, 2013). The psychophysical paradigm and stimulus layout
is taken from the latter studies, and is summarized here.

The basic stimulus (Fig. 1B and C) consisted of a 64 � 64 array of
checks, which contained a 16 � 64 rectangular target, positioned 8
checks away from one of the four edges of the array. The target was
distinguished from the remainder of the array by its statistics, i.e.,
by one or more values of fc; b ; bj; bn; b=; hy; hx; hp; hq;ag. The sub-
ject’s task was to identify the location of the target via key-press
on a response box.

To ensure that the subject identified the target by segmenting it
from the background rather than, for example, by identifying a tex-
ture gradient (Wolfson & Landy, 1998), two types of stimuli were
constructed (Fig. 1C): (1) a random background array, with a target
that had a nonzero value of one or more image statistics, and (2) a
background array in which the image statistics had a nonzero
value, with a target that was random. Our rationale (both here
and in previous studies mentioned above using this design) for
requiring segmentation rather than just gradient detection was
to reduce intra- and inter-subject variability due to strategy choice.
These two types of stimuli were randomly interleaved, and our
analyses are based on the pooled responses.

There were two kinds of experiments. In the first, we measured
sensitivity to individual image statistics and their pairwise combi-
nations. These measurements were used to construct a phe-
nomenological model, and we used the model to predict
sensitivities to combinations of multiple image statistics. In the
second kind of experiment, we measured sensitivities to these
combinations.

For the first kind of experiment, each session examined a single
plane of the stimulus space (i.e., a set of images in which two of the
coordinates fc; b ; bj; bn; b=; hy; hx; hp; hq;ag were given specific non-
zero values.) Since there are 10 coordinates, there are
45 = 10 � 9/2 different planes, one corresponding to each
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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coordinate pair. However, many of these planes differ only by a
90� rotation or mirror reflection. Pilot studies and previous work
(Victor, Thengone, & Conte, 2013) showed that visual sensitivities
were not affected by these transformations, so we focused on a
15-plane subset (the ones shown in Fig. 4) that included all combi-
nations, once these symmetries are taken into account.

Each of these 15 planes was explored in a radial fashion, in most
cases by choosing points at several distances from the origin along
8 rays. For the four rays along the coordinate axes (the positive and
negative directions of the two axes in the plane), we used five
equally-spaced values, with the maximal values chosen based on
pilot experiments to ensure that performance would span the
range from floor to ceiling: ±0.25 for c, ± 0.45 for the cardinal b’s,
±0.75 for the diagonal b’s, ±1.0 for the h’s, and ±0.85 for a. The other
four rays pointed into each of the four quadrants, with maximal
values chosen in approximate proportion to the above maximum
values. These rays were sampled at two points: the maximal point,
and a point in the same direction at a relative distance of 0.7 from
the origin. In two of the planes ðc; hyÞ and ðhy;aÞ, we used a minor
modification for consistency with an earlier pilot dataset, in which
there were two rays pointing into each quadrant, and all 12 rays (4
along the axes, and 8 oblique) were sampled at three
equally-spaced points. After assigning the in-plane coordinates as
just described, the 8 unspecified coordinates were determined
(see (Victor & Conte, 2012) Table 2) by first, setting all values of
lower-order coordinates to zero, and then, setting the remaining
coordinates to values that maximized the entropy of the resulting
images. Details on construction of these stimuli are provided in
(Victor & Conte, 2012).

The second kind of experiment measured sensitivity to combi-
nations of multiple image statistics. We considered 12 such combi-
nations, each corresponding to a vector ~c (specified below) in the
10-coordinate space. There were four kinds of sessions, each of
which focused on 3 of these ‘‘out-of-sample’’ directions, in two
opposite rays (i.e., þ~c and �~c). The four subjects who participated
in these experiments included two subjects who also participated
in the first set of experiments 6 months to 2 years previously
(MC and DT), and two who had not (SR and KP). Each session there-
fore also included stimuli along two of the coordinate axes (in pos-
itive and negative directions, as described above); for MC and DT,
this served as a check for a change in sensitivity over time, for
the others, it served as a measure of overall sensitivity to the
on-axis stimuli to scale the model predictions.

The 12 out-of-sample directions were chosen to explore (i) the
range of predicted sensitivities, (ii) the combinations of statistics
typically present in natural images, and (iii) the combinations that
determine the topological properties of a texture. For (i), we made
use of the finding that the in-plane measurements suggested a
quadratic perceptual metric, which can be captured in a symmetric
matrix (see below). The eigenvectors corresponding to the largest
and smallest eigenvalues of this matrix are thus the predicted
directions of maximal and minimal sensitivities. Since there are
10 dimensions, there are 10 eigenvectors in all, covering the range
of predicted sensitivities (which, as shown below, included sensi-
tivities predicted to be both above and below the range of the
in-plane measurements). Three of these 10 eigenvectors were not
tested, since they were included in the stimuli used to build the
model (one is in the ðb ; bjÞ-plane and two are in planes spanned
by the h’s; see ‘‘Eigenvector classes’’ below), The remaining 7
out-of-sample eigenvectors (listed in Table 3), which included
the largest of the ten eigenvalues (sym1) and the smallest (hvi2),
constituted the first 7 out-of-sample test directions ~c. Note that
since these are the eigenvectors of a symmetric matrix, they are
necessarily orthogonal – and thus, probe different directions in
the perceptual space.
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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For the two subjects that participated in both kinds of experi-
ments, we used the eigenvectors calculated from their sensitivities
in the 15 coordinate planes. For the two naïve subjects, we used
the eigenvectors calculated from the average of the four subjects
who participated in the 15-plane experiments (which were in good
agreement, see Fig. 5 and Table 3). These choices also satisfied cri-
terion (ii), as the predicted directions of maximal and minimal sen-
sitivity correspond closely to axes of greatest and least variation in
natural images (Hermundstad et al., 2014). Note that the specific
directions were determined from experimental data, but the direc-
tions themselves did not correspond to any of the data used to fit
the model.

To satisfy criterion (iii), i.e., to sample the combinations that
determine the topological properties of a texture, we made use
of the Minkowski image functionals (Michielsen & De Raedt,
2001), a series of measures that can be applied to images to extract
their topological features. For binary images, there are three cardi-
nal functionals, typically denoted A, U, and v. Considering the
images to represent material (with the black checks representing
substance, and the white checks representing empty space), the
three functionals have simple meanings: A is density (amount of
substance per unit area), U is perimeter length (amount of bound-
ary per unit area), and v is porosity (number of holes per unit area).
The first two of these functionals correspond to axes or planes in
our coordinate system: A ¼ ð1� cÞ=2 and U ¼ 1� ðb� þ bjÞ=2, and
therefore would not provide out-of-sample tests. So we focused
on v, which, other than an additive offset, is a linear combination
of multiple coordinates. This choice is also motivated by recent
findings that demonstrate human sensitivity to this image
attribute(Barbosa, Bubna-Litic, & Maddess, 2013). The precise rela-
tionship of v to the coordinates depends on how one defines con-
nectivity on the checkerboard lattice: 4-connected (i.e., the
material is contiguous across two checks that share a common
side) vs. 8-connected (i.e., the material is contiguous across two
checks that share a common side or a common vertex). The rela-
tionship can be obtained by transforming standard formulae (Eq.
(5) of (Michielsen & De Raedt, 2001)) into our coordinates (see
(Barbosa, Bubna-Litic, & Maddess, 2013) Appendices A and B for
a related calculation):

v½4� � 1
16
¼ 1

16
ð�4c� 2b� � 2bj þ b= þ bn þ hy þ hx þ hp þ hq þ aÞ

ð1Þ

and

v½8� þ 1
16
¼ 1

16
ð�4cþ 2b� þ 2bj � b= � bn þ hy þ hx þ hp þ hq � aÞ:

ð2Þ

We therefore used these directions (the right hand sides of Eqs.
(1) and (2) as out-of-sample test directions~c, as well as their sums
and differences:

v½4� þ v½8� ¼ 1
8
ð�4cþ hy þ hx þ hp þ hqÞ; ð3Þ
Table 1
Directions in stimulus space corresponding to the Minkowski image functional v of (Michi
and M8 correspond to the functionals v½4� and v½8� on a 4-connected or 8-connected lattic
connected lattice (see ‘‘Stimuli’’ in Methods for details). All eigenvectors are normalized t

Designation c b bj bn b=

M4 �0.718 �0.359 �0.359 0.180 0
M8 �0.718 0.359 0.359 �0.180 �0
M4 + 8 �0.894 0.000 0.000 0.000 0
M4–8 0.000 �0.603 �0.603 0.302 0
M6L–R 0.000 0.000 0.000 0.000 0

Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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v½4� � v½8� ¼ 1
8
ð1� 2b� � 2bj þ b= þ bn þ aÞ: ð4Þ

For completeness, we also considered a 6-connected lattice, in
which there is connectivity across sides and two of the vertices
(6L: vertices running from upper left to lower right, and 6R, ver-
tices running from upper right to lower left). These yield:

v½6L� ¼ 1
8
ð�2cþ hx þ hqÞ and v½6R� ¼ 1

8
ð�2cþ hp þ hyÞ: ð5Þ

To obtain mixtures of multiple coordinates, our final
out-of-sample test direction ~c was the difference between these
quantities,

v½6L� � v½6R� ¼ 1
8
ð�hy þ hx � hp þ hqÞ: ð6Þ

(The sum of these quantities was not used, as
v½6L� þ v½6R� ¼ v½4� þ v½8�, duplicating Eq. (3)). Thus, the Minkowski
image functionals, along with several choices for lattice connectiv-
ity, yielded 5 out-of sample test directions, which are listed in
Table 1. The corresponding stimuli were generated by iterative
applications of the ‘‘donut algorithm’’ of (Victor & Conte, 2012)
to mix in-plane textures.

Stimuli were presented on a mean-gray background, followed
by a random mask (Fig. 1B). The display size was 15 � 15�, contrast
was 1.0, and viewing distance was 1 m. The standard check size
was 14 min (10 � 10 hardware pixels). In some experiments, check
size was varied in steps down to 1.4 min (1 � 1 hardware pixel); in
these cases, the stimulus still consisted of a 64 � 64 array with a
16 � 64 target; it was centered at fixation contained and sur-
rounded by mid-level gray. Studies were carried out on an LCD
monitor with a mean luminance of 23 cd/m2, a refresh rate of
100 Hz, and a presentation duration of 120 ms unless otherwise
specified, driven by a Cambridge Research ViSaGe system.
2.3. Subjects

Studies were conducted in 16 normal subjects (8 male, 8
female), ages 21–54. Four subjects (MC, DT, JD, DF) completed
the experiments to assess sensitivities to all 10 image statistics
and 15 of their pairwise combinations. Four subjects, including
two of the above (MC and DT) and two additional subjects (SR
and KP) completed the experiments to test model predictions with
out-of-sample stimuli. Six subjects (MC, DT, SR, KP, RS, and SP)
completed the experiments that examined the effect of check size.
Three subjects (MC, DT, DF) completed the experiments that exam-
ined the effect of stimulus duration. The remaining eight subjects
did not complete any of the above experiments, and their data
are only used to assess sensitivities along two or more coordinate
axes at the standard check size of 14 min.

Of the 16 subjects, MC is an experienced psychophysical obser-
ver, and the other subjects had no prior viewing experience. All
subjects other than MC, DT, SR, and AA were naïve to the purposes
elsen & De Raedt, 2001), which describes porosity, and several derived quantities. M4
e; M4 + 8 and M4–8 are their sums and differences, and M6L–R is derived from a 6-
o Euclidean length 1.

hy hx hp hq a

.180 0.180 0.180 0.180 0.180 0.180

.180 0.180 0.180 0.180 0.180 �0.180

.000 0.224 0.224 0.224 0.224 0.000

.302 0.000 0.000 0.000 0.000 0.302

.000 �0.500 0.500 �0.500 0.500 0.000

local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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of the experiment. All subjects had visual acuities (corrected if nec-
essary) of 20/20 or better.

This work was carried out in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki), and
with the approval of the Institutional Review Board of Weill
Cornell, and with the consents of the individual subjects.

2.4. Procedure

Subjects were asked to identify the position of the target, in a
four-alternative forced choice (4-AFC) texture segregation task
(Fig. 1B and C). They were informed that the target was equally
likely to appear in any of four locations (top, right, bottom, left),
and were shown examples of stimuli of both types: target struc-
tured/background random and target random/background struc-
tured. They were asked to maintain central fixation, rather than
to attempt to scan the stimulus. Auditory feedback for incorrect
responses was given during training trials. After performance sta-
bilized (approx. 2 h for a new subject), blocks of trials (with trials
presented in randomized order) were presented. Block order was
counterbalanced across subjects. Feedback was not given during
data collection to minimize the likelihood of learning over the
course of the experiment, as collection of complete datasets occu-
pied approximately a year (see below). Thresholds for conditions
that were tested at the beginning and end of the testing period
were in good agreement.

Experiments were organized into several kinds of blocks. In the
blocks used to probe sensitivity in coordinate planes, stimuli were
placed along the positive and negative directions on each of two
axes (4 directions, 5 strengths), and in four oblique directions in
the plane that these axes determined, at 2 strengths, with the latter
repeated twice, for a total of 36 = 4 � 5 + 4 � 2 � 2 stimulus speci-
fications. This design was used for all coordinate planes except for
ðc;aÞ and ðhy;aÞ; in this case, we tested the four directions along
the two axes and 8 oblique directions, each at 3 strengths, also
for a total of 36 = 4 � 3 + 8 � 3 stimulus specifications. In the
blocks used to test sensitivity to complex mixtures, we tested 10
directions, each at 4 strengths (40 = 10 � 4 stimulus specifica-
tions). Each stimulus specification was used eight times per block:
once in each of four target locations, and in two configurations:
target structured/background random and target random/back-
ground structured (Fig. 1C). This resulted in 288 = 8 � 36 to
320 = 8 � 40 trials per block. We collected 8 blocks per subject in
the check size experiments at each of 4 check sizes
(9216 = 288 � 4 � 8 trials). For the other experiments, we collected
15 blocks per subject per condition (4320 = 288 � 15 to
4800 = 320 � 15 trials). This yielded 64–240 responses per coordi-
nate in the stimulus space. A complete set of measurements of sen-
sitivities along all axes and in each of the 15 coordinate planes
required 64800 = 15 � 4320 trials per subject, and was carried
out over approximately 1 year.

2.5. Analysis

2.5.1. Determination of thresholds from psychophysical data
The first step in data analysis consisted of determining thresh-

olds in each tested plane (i.e., along each ray emanating from the
origin). We adapted the procedure of Victor, Chubb, & Conte
(2005) and Victor, Thengone, & Conte (2013), as summarized here.
Along each ray r, we fit measured values of the fraction correct (FC)
fit to Weibull functions via maximum likelihood:

FCðxÞ ¼ 1
4
þ 3

4
ð1� 2�ðx=arÞbr Þ; ð7Þ

where x is the distance from the origin, ar is the fitted threshold
(i.e., the value of x at which FC = 0.625, halfway between chance,
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
j.visres.2015.05.018
0.25, and perfect, 1.0), and br is the Weibull shape parameter. The
distance x is determined in the ordinary Euclidean fashion: on the
coordinate axes, it is the absolute value of the coordinate; on the

oblique rays, it is calculated as x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

y þ c2
z

q
, where cy and cz are

the values of the two coordinates, each drawn from
fc; b ;bj;bn; b=; hy; hx; hp; hq;ag that specify the stimulus. In nearly
all cases, the exponent br had 95% confidence limits that included
the range 2.2 to 2.7. Since our focus was on thresholds, we therefore
refit the data from all rays within a coordinate plane by a set of
Weibull functions constrained to share a common exponent b, but
with the threshold parameter ar allowed to vary across rays. 95%
confidence limits for ar were determined via 1000-sample boot-
straps. Sensitivity is defined as 1/threshold, with corresponding
confidence limits. On some rays, performance was close to chance,
and the upper confidence limit of these bootstraps was large (e.g.,
>105); in these cases, sensitivity was taken to be zero.

Averages across subjects of sensitivities or thresholds are com-
puted as the geometric means, and statistics (standard deviations,
t-tests) are computed on the logarithms of the raw values.

2.5.2. Determination of parameters of the quadratic sensitivity model
The second step in the analysis was the construction of a model

that incorporates all of the measured thresholds, and predicts
thresholds in out-of-sample directions (i.e., in directions that were
not contained in the coordinate planes). Model parameters were
determined separately for each of the four subjects in which we
obtained threshold measurements in all 15 coordinate planes.

As in (Victor, Thengone, & Conte, 2013), we used a quadratic cue
combination rule (Macadam, 1942; Poirson et al., 1990; Saarela &
Landy, 2012), since the isodiscrimination contours within each
plane were approximately elliptical (see Fig. 4, and see (Victor,
Thengone, & Conte, 2013) for further discussion for the rationale
of the quadratic model). Specifically, we postulated that texture
segregation was based on a decision variable:

Vð~cÞ ¼
X

i;j

Q i;jcicj; ð8Þ

where the ci’s are the values of the 10 coordinates
fc; b ;bj;bn; b=; hy; hx; hp; hq;ag, and that threshold is reached when
Vð~cÞ ¼ 1. The parameters Qi;j, a symmetric matrix, specify the
model, and indicate how the image statistics combine and interact.

We determined the parameters Qi;j by adjusting them so that
Vð~cÞ was as close as possible to 1 at the thresholds ar measured
along each ray r. To apply Eq. (8) for this purpose, we write
~cðar ; rÞ ¼ ðc1ðar ; rÞ; :::; c10ðar ; rÞÞ, a vector consisting of the values
of the texture coordinates when threshold is reached along the
ray r. This vector typically contains only two nonzero values (the
specifying coordinates within the plane), but in some planes, other
coordinates also have small nonzero values (see (Victor & Conte,
2012) and its Table 2), reflecting the geometry of the image statis-
tics. The criterion that the decision variables Vð~cðar; rÞÞ are as close
as possible to 1 was formalized by minimizing:

F ¼
X

r

ðVð~cðar ; rÞÞ � 1Þ2

¼
X

r

X
i;j

Q i;jciðr; arÞcjðr; arÞ
 !

� 1

 !2

; ð9Þ

where the second equality follows from Eq. (8), and the sum is over
all rays r. Note that F = 0 only if the threshold ar along each ray r is
exactly predicted by the quadratic model. Since F is a quadratic
function of the Qi,j and is bounded below by 0, a unique minimum
is guaranteed. We found this minimum by solving the linear system
of equations @F

@Qi; j
¼ 0.
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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Table 2
Summary statistics for the fit of the phenomenological model for individual subjects (MC, DT, DF, JD), and the average across subjects (AVG). Mean deviation: average Euclidean
distance between the measured threshold and the model (positive values: measured threshold higher than model); units are image statistic coordinates (range, �1 to 1). RMS
deviation: root-mean-squared deviation between measured and model thresholds, in image-statistic units. RMS z-score: root-mean-squared deviation between measured and
model thresholds as a z-score, i.e., the ratio of the threshold difference to the standard error of measurement of the threshold. For each pair of columns, statistics are computed for
all thresholds considered individually (‘‘All’’), and for the average of thresholds in opposite direction (‘‘Symmetrized’’). ‘‘On-axis’’: measurements on the coordinate axes; ‘‘Off-
axis’’: values in oblique directions in the coordinate planes; ‘‘All’’: on-axis and off-axis combined. For the few directions in which model thresholds were >1 (beyond the range that
could be determined experimentally), measured values were set to 1 for computation of statistics.

Subject Direction Mean deviation RMS deviation RMS z-score

Type All Symmetrized All Symmetrized All Symmetrized

MC On-axis �0.0160 �0.0122 0.0332 0.0142 2.36 1.12
Off-axis �0.0040 0.0037 0.0608 0.0330 3.42 2.34
All �0.0096 �0.0037 0.0485 0.0261 2.84 1.93

DT On-axis �0.0246 �0.0131 0.0613 0.0224 2.49 1.03
Off-axis �0.0109 0.0039 0.0948 0.0334 3.48 1.73
All �0.0162 �0.0030 0.0799 0.0277 3.00 1.49

DF On-axis �0.0236 �0.0131 0.0532 0.0321 2.06 1.47
Off-axis �0.0199 �0.0066 0.0951 0.0535 4.50 2.70
All �0.0206 �0.0073 0.0789 0.0430 3.58 2.16

JD On-axis �0.0274 �0.0120 0.0765 0.0238 1.97 0.62
Off-axis �0.0236 �0.0041 0.1149 0.0567 2.78 1.80
All �0.0226 �0.0059 0.0955 0.0434 2.39 1.41

AVG On-axis �0.0229 �0.0126 0.0561 0.0231 2.22 1.06
Off-axis �0.0146 �0.0008 0.0914 0.0442 3.55 2.14
All �0.0173 �0.0050 0.0757 0.0351 2.96 1.75
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For the rays r that were along a coordinate axis, replicate mea-
surements of thresholds ar were available from each plane that
contained this axis; these values were pooled (by averaging) across
planes prior to use in Eq. (9). Similarly, thresholds were pooled
across coordinates that were related by rotational symmetry (the
two cardinal b’s, the two diagonal b’s, and the four h’s), since there
were no significant differences between these thresholds (Victor,
Thengone, & Conte, 2013). In total, there were 20 unique free
parameters Qi,j to be determined (five unique values of Qi,j corre-
sponding to c, the cardinal b’s, the diagonal b’s, h, and a, and 15
unique values for the 15 coordinate planes). There were 78 unique
thresholds available to constrain this fit (10 values in the positive
and negative directions on the 5 kinds of coordinate axes, and 68
unique oblique directions in the coordinate planes).

The parameters Qi,j determined by minimizing Eq. (9) provide a
prediction of the threshold along any ray specified by an arbitrary
unit vector ~u ¼ ðu1; :::;u10Þ: the predicted threshold is the value a
for which Vða~uÞ ¼ 1, i.e., the value of a for which:
a2
X

i;j

Q i;juiuj ¼ 1: ð10Þ

Confidence limits on the Qi,j and on quantities derived from
them (e.g., eigenvalues of the matrix Qi,j, thresholds in mixture
directions predicted by Eq. (10), and dot-products between eigen-
vectors of the Q-matrices for different subjects) were determined
by a parametric bootstrap with 100 resamplings. Each bootstrap
consisted of repeating the above determination of Qi,j using thresh-
old values a drawn according to the distribution found along each
ray in the 1000-sample bootstrap procedure described following
Eq. (7). Specifically, for each ray, we determined the Gaussian dis-
tribution that matched the mean and standard deviation of the
sensitivity (=1/threshold) values, drew randomly from this
Gaussian, and set the threshold to 1/sensitivity. We worked in
terms of sensitivities rather than directly in terms of thresholds
to avoid outlier effects due to large upper confidence limits for
some thresholds. Confidence limits for the Qi,j and quantities
derived from them were then set at the 2.5% and 97.5% quantiles
(interpolated by Matlab’s quantile.m) of these 100 resamplings.
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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2.5.3. Eigenvector classes
The matrix Q is symmetric (i.e., Qi,j = Qj,i), and therefore, is fully

characterized by its eigenvalues and eigenvectors. Because we
assume that coordinate axes related by rotational symmetry are
equivalent (see empirical evidence for this in (Victor, Thengone,
& Conte, 2013) and below), there is a further induced symmetry
on Q. We use this symmetry to classify its eigenvectors into sub-
sets, and distinguish the quantities that are determined from the
data, from those that are constrained by this assumed symmetry.
(This classification is a natural one that emerges from standard
group-theoretic procedure: decomposing the 10-dimensional
space of image statistics according to the irreducible representa-
tions of the symmetry group of 90� rotations and reflections in
the plane. For background on the theory of irreducible group rep-
resentations, see for example (Serre, 1977)).

This machinery leads to the following decomposition of the 10
eigenvectors, and several guarantees about their symmetry and
coordinates. First, there is a subset of 5 eigenvectors, each of which
is symmetric with respect to 90� rotation (that is, these eigenvec-
tors are linear combinations of the image statistics whose values
are unchanged if the image is rotated by 90�). We designate these
as sym1 through sym5, in descending order of their eigenvalues. In
this subset and the subspace that they span, c and a are uncon-
strained, but symmetry requires that, b ¼ bj, bn ¼ b=, and
hy ¼ hx ¼ hp ¼ hq. Next, there is a pair of eigenvectors that span a
subspace with a somewhat surprising property: for textures in this
subspace, image statistic values are replaced by their negative if
the texture is replaced by its horizontal or vertical mirror-image.
We designate these eigenvectors as hvi1 and hvi2, also in descend-
ing order of their eigenvalues. In this subspace, symmetry forces,
c ¼ b� ¼ bj ¼ a ¼ 0, bn ¼ �b=, and hy ¼ �hx ¼ hp ¼ �hq. The final
three eigenvectors are constrained by symmetry to lie in specific
coordinate directions or coordinate planes. They are b ¼ �bj
(other coordinates zero), hy ¼ �hp (other coordinates zero), and
hx ¼ �hq (other coordinates zero). The first we designate dii
because in this subspace, image statistic values are replaced by
their negative if the texture is replaced by its diagonal mirror
image. The latter pair we designate rot_A and rot_B because they
are rotations of each other. Symmetry forces rot_A and rot_B to
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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have the same eigenvalue. These final three eigenvectors are all
within coordinate planes, and were therefore not used as
out-of-sample tests of the model.

2.6. Previously reported work

A summary of findings for 4 subjects in 11 of the 15 planes at
standard check sizes is included in a paper that compares these
sensitivities to the statistics of natural images (Hermundstad
et al., 2014). A partially overlapping portion of 6 subjects’ data in
8 of those planes was also previously reported (Victor, Thengone,
& Conte, 2013).

3. Results

3.1. Overview

Our immediate goal is to measure visual sensitivity to a set of
image statistics chosen to capture the basic features of contrast,
edge, and corner, and their interactions. As described in Methods
and (Victor & Conte, 2012), these statistics parameterize a
10-dimensional space of black-and-white textures constructed on
a square lattice. We begin with sensitivities to individual image
statistics and then consider their pairwise interactions. Next, we
use these data to constrain a model for sensitivities to combina-
tions of multiple image statistics, and we then test the model with
out-of-sample stimuli that contain such combinations. Finally, we
show how the above sensitivities, determined for a check size of
14 min and a presentation time of 120 ms, change as a function
of these parameters.

3.2. Individual image statistics

Fig. 2 shows representative psychometric functions for each
kind of image statistic in the 4-AFC segmentation task. For all sub-
jects, the thresholds follow the same ranking: threshold is lowest
for the fraction of white vs. black checks (c), next-lowest for
two-point correlations in the cardinal direction (b�) and the
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Fig. 2. Psychometric functions along five kinds of coordinates: first-order ðcÞ, cardinal sec
each coordinate, psychometric functions are shown for negative excursions (left elem
performance is 0.25; error bars indicate 95% confidence limits based on binomial statist
images along each coordinate axis, constructed with c ¼ �0:2, b� ¼ �0:4, b= ¼ �0:4, hy ¼
and hy reproduced, with permission of the copyright holder, The Association for Researc
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diagonal direction (bn), next-lowest for four-point correlations,
(a), and then finally highest for three-point correlations ðhyÞ. As
mentioned in the Introduction, the stimuli are calibrated so that
for an ideal observer, sensitivities along each axis are identical.
Thus, the dependence of visual thresholds on the type of image
statistic is a direct measure of the selectivity of visual processing.
This ratio (threshold for hy vs. threshold for c) is approximately
4.5:1. Note that thresholds do not simply covary with the order
of the statistic: the threshold for the third-order statistic, hy, is
higher than for the fourth-order statistic, a. In all cases, the thresh-
olds for positive values of the image statistic were similar to the
thresholds for negative values. All of the psychophysical functions
had approximately the same shape (corresponding to a Weibull
exponent typically in the range 2.2–2.7), so the comparisons of rel-
ative thresholds are independent of the choice of threshold crite-
rion. Subjects included an individual with extensive viewing
experience (MC: thousands of hours, most with similar stimuli
and tasks) to individuals for whom this was their first psychophys-
ical experiment. While there is some variability in overall thresh-
olds across subjects, this variability was on the order of 20%, and
did not appear to depend on viewing experience.

The examples of Fig. 2 typify the results across all 16 subjects
(Fig. 3). The lowest thresholds are for c (mean 0.166, SD ± 11%);
highest thresholds are for hy (mean 0.793, SD ± 16%).
Consistency across subjects is high: all had the same rank-order
of thresholds ðc < b� < bn < hy < aÞ, and the scatter of thresholds
for each kind of image statistic ranges from SD ±9.5% for bn to
±18% to a). This intersubject variability is largely a matter of over-
all sensitivity differences. With intersubject variability of overall
sensitivity removed, by adjusting each subject’s set of thresholds
up or down by factors ranging from 0.81 to 1.24, the scatter of
thresholds for each kind of image statistic is 10% or less. The vari-
ability between subjects was not a matter of familiarity with the
purpose of the experiment (threshold ratios for the 4 non-naïve
observers compared to the 12 naïve observers ranged from 1.13
to 0.93 across the five types of statistics; no ratios were signifi-
cantly different from 1, two-tailed un-paired t-tests p = 0.06 to
p = 0.97).
+0.4 +0.8-0.8 +0.8-0.8
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ics. The patches above the psychometric functions show typical 32 � 32 samples of
�0:8, and a ¼ �0:8. Subjects MC, DT, JD, DF. Data for subjects MC and DT for b , b= ,
h in Vision and Ophthalmology, from (Victor, Thengone, & Conte, 2013).
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The consistency across subjects allows for identification of
some subtle asymmetries. Thresholds for detecting deviations of
first-order statistics were larger in the positive (mean 0.172,
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SD ± 11%) direction than in the negative (mean 0.161, SD ± 13%)
direction (two-tailed paired t-test: p = 0.017, N = 12), meaning that
an increase in the fraction of black checks was easier to detect than
an increase in the fraction of white checks – but this difference in
sensitivities was a small effect (<7%). Thresholds for detecting devi-
ations of the four-point correlation a was smaller in the positive
(mean 0.579, SD ± 13%) direction than in the negative (mean
0.726, SD ± 13%) direction (p = 0.001, N = 12); these sensitivities
differed by approximately 25%. There were no asymmetries
(p = 0.08 to p = 0.36, N = 11 to N = 14) between detection of positive
vs. negative two-point or three-point correlations (b�, bn, or hy.
Across subjects, we also did not detect any asymmetries in thresh-
olds for image statistics that differed by a rotation (b� vs. bj, bn vs.
b=, hy vs. hx vs. hp: threshold ratios were within 10% of each other,
and not significantly different (p = 0.06 to p = 0.98, N = 6 to N = 14).
3.3. Pairwise interactions of image statistics

We next consider pairwise interactions of the image statistics.
Since there are 10 independent image statistics,
fc; b ; bj; bn; b=; hy; hx; hp; hq;ag, there are 45 = 10 � 9/2 pairwise
combinations. To simplify the task of exploring these interactions,
we exploit the above observation that thresholds for individual
data +/ - 95%CL fit
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the fractional contribution of each order of statistic to the eigenvectors. Eigenvectors are named according to symmetry class (see Eigenvector Classes in Methods), and,
within each symmetry class (sym, hvi, dii, and rot), are labeled in order of decreasing eigenvalue. Texture samples are the eigenvectors of the averaged Q-matrix at distances
of 0.18 (sym1 and sym2) and 0.36 (other eigenvectors) from the origin. (B) Dot-products of the eigenvectors of the Q-matrices for each of the four subjects of Fig. 4, with the
eigenvectors of the average Q-matrix of the other three subjects. Dot-products are not shown for the last three eigenvectors, since symmetry considerations force these values
to 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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image statistics are invariant under rotation. Based on this, we
assume that their pairwise interactions are invariant under rota-
tion as well. As examples, we assume that the interaction involving
ðc; b Þ is identical to the interaction involving ðc; bjÞ since these
combinations differ by a 90� rotation; that the interaction involv-
ing ðhy; hxÞ is identical to the interaction involving ðhp; hqÞ since
these combinations differ by a 180� rotation; and that the interac-
tion involving ðbn;aÞ is identical to the interaction involving ðb=;aÞ,
since these combinations differ by a 90� rotation. These assump-
tions reduce the number of distinct pairwise interactions from 45
to 15 (see Methods and Table 2 of (Victor & Conte, 2012) for
details).

In four subjects, we measured these pairwise interactions, by
determining the isodiscrimination contours in the corresponding
15 coordinate planes (Fig. 4). Isodiscrimination contours were typ-
ically symmetric about the origin: the threshold along a ray in one
direction was approximately equal to the threshold along a ray in
the opposite direction. This extends the above observation for
thresholds along the coordinate axes to thresholds in the oblique
directions within coordinate planes. We tested a total of 34 oblique
orientations (2 oblique orientations in 13 of the planes, 4 oblique
orientations in the ðc; hyÞ and ðhy;aÞ planes); 18 of these 34
included either c or a as one of their components, which, as noted
above, manifested modest asymmetries. Considering the
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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thresholds along opposite directions in each of these 34 oblique
orientations, we only found statistically significant differences in
threshold in three of them (p < 0.05 by paired t-test,
false-discovery-rate corrected (Benjamini & Hochberg, 2001))
across subjects: the same-sign direction in the ðb=; hyÞ and
ðbn; b=Þ-planes, and the opposite-sign direction in the ðb ;aÞ-plane.
As noted previously (Victor, Thengone, & Conte, 2013), the
ðbn; b=Þ-asymmetry (the fourth plane in the second row of each of
the datasets of Fig. 4) was large: across subjects, thresholds when
both parameters were positive was 1.47 times (geometric mean)
higher than when both parameters were negative. All other asym-
metries were <25%, and most (18/34) were <10%.

The isodiscrimination contours had an approximately elliptical
shape, suggesting that the image statistics combine via a quadratic
combination rule. However, the axes of the isodiscrimination con-
tours were not necessarily aligned with the coordinate axes. A
tilted isodiscrimination contour means that the direction of lowest
threshold (the direction from the origin to the closest approach of
the contour) corresponds to a combination of the statistics, rather
than either one in isolation. It also means that the interaction
between two image statistics depends on their relative sign – facil-
itating detection for one sign combination, and hindering it for the
other. These tilts can be subtle (for example, ðc; hyÞ – the third
plane in the first row of each dataset of Fig. 4) or large (for example,
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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ðhy; hxÞ – the third plane in the third row of each dataset of Fig. 4).
To formalize this observation without postulating a specific shape
for the isodiscrimination contours, we compared thresholds for
same-sign vs.opposite-sign combinations of image statistics. This
showed that of the 15 planes, eight had contours with a significant
(p < 0.05) tilt with respect to the axes (two-tailed paired t-test
across subjects, with false discovery rate correction.) In six planes,
thresholds were lower for combinations of statistics that are of the
same sign, than for combinations that are of opposite sign, corre-
sponding to a counterclockwise tilt: ðc; hyÞ, ðb�; bjÞ, ðb�;aÞ, ðbn; b=Þ,
ðhy; hxÞ, and ðhy; hpÞ. In two planes, thresholds were higher for
same-sign combinations than for opposite-sign combinations,
corresponding to a clockwise tilt: ðbn; hyÞ and ðb=; hyÞ.
3.4. A phenomenological model for interaction of image statistics

The results above indicate that isodiscrimination contours in
the coordinate planes had approximately elliptical shapes that
were nearly symmetric with respect to the origin (i.e., that thresh-
olds were similar along opposite rays), but were often tilted with
respect to the coordinate axes. Based on these observations, we
framed a phenomenological model for how the image statistics
interact to determine the perceptual threshold.

The basic idea is that the isodiscrimination contours form an
ellipse in each coordinate plane, and that these ellipses, taken
together, determine an ellipsoidal isodiscrimination contour in
the entire 10-dimensional space. In any single plane (e.g., a plane
corresponding to coordinates cu and cv , where cu and cv are chosen
from the 10 coordinates fc; b ; bj; bn; b=; hy; hx; hp; hq;ag), an elliptical
isodiscrimination contour can be described by the locus of points
ðcu; cv Þ where:

Q u;uc2
u þ 2Qu;vcucv þ Qv;vc2

v ¼ 1: ð11Þ

The parameters Q describe the size and shape of the ellipse:
1=

ffiffiffiffiffiffiffiffiffi
Q u;u

p
and 1=

ffiffiffiffiffiffiffiffiffi
Qv ;v

p
are the thresholds for cu and cv , since

ð�1=
ffiffiffiffiffiffiffiffiffi
Qu;u

p
;0Þ and ð0;�1=

ffiffiffiffiffiffiffiffiffi
Qv ;v

p
Þ are the points where the isodis-

crimination contour (11) intersects the axes. The third parameter,
Q u;v , describes their interaction. We can then use a single equation,
generalizing Eq. (11), to represent these contours in all coordinate
planes:X

i;j

Q i;jcicj ¼ 1: ð12Þ

Note that Eq. (12) simplifies to Eq. (11) in any plane (i.e., if only
two of the ck are nonzero). In Eq. (12), Qi;j is a symmetric matrix,

with 1=
ffiffiffiffiffiffiffi
Qi:i

p
corresponding to the threshold along axis ci and

Q i;j ¼ Qj;i describing the interaction of ci and cj. Geometrically,
Eq. (12) describes the unique 10-dimensional ellipsoid whose
intersection with each of the coordinate planes yields the ellipses
of Eq. (11). Q, a 10 � 10 symmetric matrix, has 20 independent
parameters, since the symmetry considerations reduce the number
of unique diagonal elements to 5 (sensitivities for c, the cardinal
b’s, the diagonal b’s, the h’s, and a), and the number of unique
off-diagonal elements to 15 (one for each coordinate plane of
Fig. 4). There are 78 unique measured thresholds: the 10 on-axis
thresholds, and 68 off-axis thresholds.

Fig. 4 shows the fit of this model in each of the planes, and
Table 2 summarizes the statistics of the fit across subjects.
Overall, the ellipsoidal shape provides a reasonable fit: the
root-mean-squared (RMS) error in thresholds is 0.076 across sub-
jects (Table 2 bottom row, RMS deviation ‘‘all’’ column). The main
source of model error is that there are modest differences in
thresholds for positive and negative values of the image statistics
(as noted above, a 25% lower threshold for a > 0 than for a < 0,
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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smaller asymmetries for the other parameters). No quadratic
model can account for such asymmetries. When the thresholds in
opposite directions are replaced by their averaged values – so the
effect of this asymmetry is removed – the RMS error in the model
fit is 0.035 (Table 2 bottom row, RMS deviation ‘‘symmetrized’’
column).

Though this error is small, we note that it is more than can be
accounted for from errors in the experimental measure of thresh-
old. This is quantified via a z-score: the ratio of model error in each
direction to the measurement error (1 s.d. of the bootstrapped dis-
tribution of fitted thresholds). Root-mean-squared z-scores were
2.95 for all thresholds, and 1.75 for the symmetrized thresholds,
indicating that the model error is between 2 and 3-fold higher than
could be accounted for by the uncertainty of the psychophysical
measurements.

Most of this excess error can be attributed to the off-diagonal
thresholds, i.e., to the model’s prediction of pairwise interactions.
As seen in Table 2, the RMS z-score for the symmetrized thresholds
was 1.06 on-axis, indicating that the model error was only margin-
ally larger than the uncertainty of psychophysical thresholds, but
the z-score was 2.14 off-axis, i.e., for the pairwise interactions.
Overall, the phenomenological model slightly overestimated
on-axis thresholds, compared to off-axis thresholds (�0.023 com-
pared to �0.015 considering all thresholds, �0.013 compared to
�0.001 for the symmetrized thresholds).

In sum, while there are detectable systematic deviations of the
phenomenological model from an ideal fit (there are asymmetries
of thresholds in opposite directions that account for model errors
of approximately 0.04 and there is a deviation from the
closest-fitting ellipsoidal shape that accounts for errors of 0.01–
0.02), the model provides a reasonable summary of the shape of
the isodiscrimination surfaces. We therefore use its parameters,
the sensitivity matrix Q, to compare the shape of the isodiscrimina-
tion surfaces across subjects, and, in the next section, to predict
sensitivities for combinations of several image statistics.

Since Q is a symmetric matrix, we can use its eigenvalues and
eigenvectors to compare it across subjects. Fig. 5A shows the eigen-
values of the matrix Q determined from each of the four subjects,
and the mean across subjects. Interestingly, the eigenvalue corre-
sponding to the eigenvector hvi2 is experimentally indistinguish-
able from 0 (its confidence limits include 0 for all subjects and
the cross-subject average). This means that the phenomenological
model predicts that perceptual sensitivity is zero for this combina-
tion of image statistics. Thus, the model predicts a combination of
image statistics that is metameric to random – even though each of
the image statistics, individually, is perceptually salient. This pre-
diction will be tested below.

Fig. 5B compares the directions of the eigenvectors across sub-
jects. All dot-products are close to 1, indicating that across the sub-
jects, the principal axes of the ellipsoid (i.e., the directions of
greatest and least sensitivities) are consistent.

3.5. Prediction of sensitivities for combinations of multiple image
statistics

We next asked whether the phenomenological model, which
was constructed to capture pairwise interactions of image statis-
tics, could also account for more complex combinations. We tested
this with two kinds of out-of-sample measurements: first, with
combinations of statistics that were predicted to yield highest
and lowest sensitivities, and second, combinations of statistics that
might have functional importance, as they are associated with
material properties. The first set of combinations consists of the
eigenvectors of the matrix Q determined above, and are listed in
Table 3. One of these directions, hvi2, is of particular interest, since
the predicted sensitivity in this direction is zero (Fig. 5). For the
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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Table 3
Empirical eigenvectors of the ellipsoidal model of sensitivity data for individual subjects (MC, DT, DF, JD), and the average across subjects (AVG). Symmetries of the model place
constraints on the 10 eigenvectors, leaving only 7 that are free to vary (see ‘‘Eigenvector classes’’ in Methods for further details). These consist of (i) five eigenvectors that are
symmetric with respect to 90� rotation, and therefore have b ¼ bj , bn ¼ b= , hy ¼ hx ¼ hp ¼ hq , designated sym1 through sym5, in order of decreasing eigenvalue; and (ii); two
eigenvectors that invert when the image is mirrored in the horizontal or vertical plane ðbn ¼ �b= , and hy ¼ �hx ¼ hp ¼ �hqÞ, with remaining coordinates zero, designated hvi1 and
hvi2, in order of decreasing eigenvalues. The final three eigenvectors are determined by symmetry, and are not shown. All eigenvectors are normalized to Euclidean length 1.

Eigenvector Subject c b bj bn b= hy hx hp hq a

sym1 MC 0.971 �0.090 �0.090 0.001 0.001 0.100 0.100 0.100 0.100 �0.043
DT 0.983 �0.001 �0.001 0.002 0.002 0.092 0.092 0.092 0.092 0.001
DF 0.979 �0.066 �0.066 0.126 0.126 �0.011 �0.011 �0.011 �0.011 �0.010
JD 0.996 �0.021 �0.021 �0.013 �0.013 0.040 0.040 0.040 0.040 0.011
AVG 0.988 �0.057 �0.057 0.022 0.022 0.063 0.063 0.063 0.063 �0.017

sym2 MC 0.122 0.661 0.661 �0.091 �0.091 0.032 0.032 0.032 0.032 0.303
DT 0.012 0.683 0.683 0.058 0.058 �0.029 �0.029 �0.029 �0.029 0.239
DF 0.055 0.681 0.681 0.135 0.135 �0.052 �0.052 �0.052 �0.052 0.150
JD 0.036 0.692 0.692 0.062 0.062 �0.042 �0.042 �0.042 �0.042 0.157
AVG 0.088 0.686 0.686 0.044 0.044 �0.026 �0.026 �0.026 �0.026 0.214

sym3 MC 0.101 0.105 0.105 0.633 0.633 �0.203 �0.203 �0.203 �0.203 �0.038
DT 0.049 �0.062 �0.062 0.675 0.675 �0.138 �0.138 �0.138 �0.138 �0.039
DF �0.194 �0.136 �0.136 0.650 0.650 �0.138 �0.138 �0.138 �0.138 �0.048
JD 0.036 �0.071 �0.071 0.680 0.680 �0.122 �0.122 �0.122 �0.122 �0.054
AVG 0.008 �0.047 �0.047 0.663 0.663 �0.168 �0.168 �0.168 �0.168 �0.055

sym4 MC �0.158 0.124 0.124 0.223 0.223 0.384 0.384 0.384 0.384 �0.506
DT �0.155 0.102 0.102 0.173 0.173 0.413 0.413 0.413 0.413 �0.463
DF �0.017 0.090 0.090 0.165 0.165 0.397 0.397 0.397 0.397 �0.548
JD �0.056 0.095 0.095 0.140 0.140 0.416 0.416 0.416 0.416 �0.496
AVG �0.110 0.100 0.100 0.195 0.195 0.407 0.407 0.407 0.407 �0.478

sym5 MC �0.090 �0.173 �0.173 0.205 0.205 0.225 0.225 0.225 0.225 0.804
DT �0.088 �0.137 �0.137 0.108 0.108 0.225 0.225 0.225 0.225 0.854
DF �0.022 �0.074 �0.074 0.125 0.125 0.266 0.266 0.266 0.266 0.822
JD �0.049 �0.077 �0.077 0.116 0.116 0.241 0.241 0.241 0.241 0.852
AVG �0.064 �0.121 �0.121 0.142 0.142 0.226 0.226 0.226 0.226 0.850

hvi1 MC 0.692 �0.692 0.104 �0.104 0.104 �0.104
DT 0.692 �0.692 0.103 �0.103 0.103 �0.103
DF 0.695 �0.695 0.092 �0.092 0.092 �0.092
JD 0.696 �0.696 0.087 �0.087 0.087 �0.087
AVG 0.693 �0.693 0.098 �0.098 0.098 �0.098

hvi2 MC �0.147 0.147 0.489 �0.489 0.489 �0.489
DT �0.145 0.145 0.489 �0.489 0.489 �0.489
DF �0.131 0.131 0.491 �0.491 0.491 �0.491
JD �0.124 0.124 0.492 �0.492 0.492 �0.492
AVG �0.138 0.138 0.490 �0.490 0.490 �0.490
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second set, we used the combinations of image statistics that
extremize the surface porosity, i.e., the number of holes per unit
area. The specific combinations of image statistics that determine
porosity depend on whether each check is considered to be con-
nected to its four nearest neighbors (the M4 combination) or its
eight nearest neighbors (the M8 combination). We tested both of
these and related combinations (Table 1), as detailed in Methods.
For each combination, we determined thresholds in opposite direc-
tions from the origin of the space. Measurements were made in
four subjects. For the two subjects, MC and DT, who participated
in all experiments, we used their personalized eigenvectors
(Table 3). For the other two subjects (SR and KP), for which we
did not measure sensitivities in the coordinate planes, we used
the eigenvectors determined from the average Q-matrix (AVG in
Table 3).

Results are shown in Fig. 6. The overall sensitivities are
well-captured by the phenomenological model. Of note, in the pre-
dicted metameric direction, hvi2, all of the subjects have a 95%
confidence limit for threshold that extends beyond the boundary
of the space – corresponding to a predicted sensitivity of zero.
We also note that the predicted sensitivities are accurate in the
Minkowski directions, known to tap topological properties of
visual textures (Barbosa, Bubna-Litic, & Maddess, 2013). We calcu-
lated the statistics of the model predictions with no free parame-
ters (upper half of Table 4), and with a single scale factor to
match the on-axis thresholds measured in trials interleaved with
the out-of-sample measurements (lower half of Table 4). Overall
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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RMS prediction error was comparable, approximately 0.070. As
noted above, the phenomenological model cannot account for
asymmetries in thresholds for positive and negative variations
along each of these test directions. This asymmetry accounted for
approximately half of the model error (middle columns, bottom
row of Table 4); the symmetrized thresholds were predicted with
an RMS error of approximately 0.037. This is comparable to the
in-sample RMS prediction error of the model, 0.035 (Table 2).
The ratio by which model predictions exceeded the uncertainty
of the psychophysical thresholds was also comparable for the
out-of-sample directions (RMS z-score of 1.68, Table 4) and for
the in-sample directions (RMS z-score of 1.75, Table 2). This ratio
was comparable for the eigenvector directions and the
Minkowski directions (RMS z-scores of 1.45 and 1.78).

Finally, we note that the eigenvector directions and the
Minkowski directions represent very different tests of the model,
as they probe diverse directions in the space. Considering the seven
eigenvector directions and the five Minkowski directions, the
35 (= 7 � 5) dot products are exactly zero in 13 cases (guaranteed
by symmetry), and the absolutes values of the other 22 dot prod-
ucts are approximately uniformly distributed between 0 and 1,
with a median 0.38–0.44, depending on subject.

In sum, the ellipsoidal model constructed to fit the pairwise
thresholds was able to predict sensitivities to out-of-sample com-
binations of multiple image statistics. The size and nature of the
errors (Table 4) was comparable to the in-sample fits of the model,
shown in Table 2. As was the case for the in-sample fits, about half
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 6. Measured and predicted sensitivities along the eigenvectors (Table 3) and in the Minkowski directions (Table 1) for four subjects. Thresholds are measured for positive
(filled symbols) and negative (open symbols) directions, where the sign is defined relative to the eigenvectors tabulated in Table 3 and the Minkowski directions in Table 1.
The prediction of the ellipsoidal model is necessarily the same for both directions, and is shown in gray. Error bars show 95% confidence limits via bootstrap. Texture samples
are at distances of 0.18 for sym1 and sym2, 0.36 for the other eigenvectors, and 0.3 for the Minkowski directions.
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of the model error was due to its assumed symmetry, which pre-
cluded the model from predicting differences in thresholds along
opposite directions. The remaining error was within a factor of
two of the experimental error in determining the symmetrized
thresholds (the RMS z-scores of Tables 2 and 4).

3.6. Scaling

So far we have considered stimuli constructed with a single
check size, a 14-min square. We next examine how the perceptual
sensitivities to individual statistics and their interactions depend
on this scale. To keep the statistical demands of the task identical,
we change the stimulus size in proportion to the check size, so that
the number of checks in the target and background are unchanged.

Fig. 7 shows the results. For the statistics of order two or more
(b�, bn, hy and a), there is a monotonic decrease in sensitivity as
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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check size decreases over the range from 14 min to 1.4 min. The
decrease is gradual over the range from 14 min to 2.8 min and
more marked from 2.8 min to 1.4 min. For some subjects, sensitiv-
ities to hy or a drop to zero (i.e., thresholds are greater than 1) for
the smallest check size. In contrast, for the first-order statistic c,
there is little change in sensitivity over the entire range, and three
subjects may even show a slight increase in sensitivity at the
smallest check size. This difference in scaling behavior between
the first-order statistic c and the statistics of order two or more
is not surprising: c, which corresponds to the fraction of white
vs. black checks, can be judged even if the individual checks cannot
be resolved, while the other statistics require visibility of the indi-
vidual checks.

Fig. 8 shows how isodiscrimination contours depend on check
size. This corroborates the findings of Fig. 7 and extends them to
pairwise mixtures of the image statistics. For combinations of
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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Table 4
Summary statistics for the quadratic model’s predictions for thresholds for the combinations of image statistics shown in Fig. 6. In the top half of the table, predictions have no
free parameters. In the bottom half of the table, the predictions use an overall scale factor to match the on-axis thresholds for the individual subjects (for MC and DT) or the group
mean (for KP and SR) with the on-axis thresholds determined during the sessions used for measuring thresholds for combinations of image statistics (the out-of-sample stimuli).
The scale factors used were 0.895 (MC), 0.927 (DT), 1.047 (SR), 1.045 (KP). Other details as in Table 2.

Subject Direction Mean deviation RMS deviation RMS z-score

Type All Symmetrized All Symmetrized All Symmetrized

Without global sensitivity adjustment
MC Eigenvectors �0.0320 �0.0320 0.0370 0.0245 5.48 4.97

Minkowski �0.0356 �0.0365 0.0566 0.0274 5.03 4.20
All �0.0341 �0.0341 0.0487 0.0262 5.23 4.56

DT Eigenvectors �0.0285 �0.0170 0.0340 0.0237 3.86 2.76
Minkowski �0.0394 �0.0202 0.0276 0.0194 5.76 3.96
All �0.0349 �0.0189 0.0304 0.0213 4.90 3.41

SR Eigenvectors 0.0084 0.0181 0.0600 0.0562 1.66 1.39
Minkowski �0.0230 0.0169 0.1540 0.1687 1.81 1.82
All �0.0099 0.0174 0.1238 0.1339 1.74 1.65

KP Eigenvectors 0.0248 0.0248 0.0221 0.0148 1.28 1.09
Minkowski �0.0101 0.0082 0.0942 0.1104 2.16 1.87
All 0.0045 0.0151 0.0734 0.0849 1.85 1.63

AVG Eigenvectors �0.0068 �0.0015 0.0383 0.0298 3.07 2.55
Minkowski �0.0270 �0.0077 0.0838 0.0815 3.69 2.97
All �0.0186 �0.0051 0.0691 0.0666 3.43 2.81

With global sensitivity adjustment
MC Eigenvectors �0.0131 �0.0131 0.0212 0.0174 2.50 1.73

Minkowski 0.0029 0.0029 0.0557 0.0470 2.62 1.45
All �0.0038 �0.0038 0.0447 0.0376 2.57 1.58

DT Eigenvectors �0.0131 �0.0016 0.0428 0.0111 2.46 1.24
Minkowski �0.0184 0.0008 0.0823 0.0317 3.90 1.75
All �0.0162 �0.0002 0.0687 0.0253 3.26 1.52

SR Eigenvectors �0.0008 0.0089 0.0462 0.0283 2.24 2.17
Minkowski �0.0418 �0.0019 0.1221 0.0461 2.12 2.03
All �0.0247 0.0026 0.0979 0.0397 2.18 2.09

KP Eigenvectors 0.0161 0.0161 0.0295 0.0259 0.99 0.66
Minkowski �0.0278 �0.0095 0.0837 0.0574 2.27 1.87
All �0.0095 0.0012 0.0667 0.0469 1.85 1.54

AVG Eigenvectors �0.0027 0.0026 0.0349 0.0207 2.05 1.45
Minkowski �0.0213 �0.0019 0.0859 0.0456 2.73 1.78
All �0.0136 �0.0001 0.0695 0.0374 2.46 1.68
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second- and higher-order image statistics (first two columns:
ðhy; hxÞ-plane and ðb�;aÞ-plane), isodiscrimination contours gradu-
ally enlarge as check size decreases from 14 to 2.8 min. They main-
tain the same shape and tilt, indicating that relative sensitivities to
the image statistics and their combinations are approximately
independent of check size. Similar results were found in the
ðbn; hyÞ-plane and the ðhy;aÞ-plane (not shown). In planes corre-
sponding to a combination of the first-order statistic and
higher-order statistics (ðc; b�Þ-plane in Fig. 8, last column; and
ðc; hyÞ- and ðc;aÞ-planes, not shown), isodiscrimination contours
become progressively elongated as check size decreases, especially
between 2.8 and 1.4 min. This is the expected behavior based on
Fig. 7, since the sensitivity to c is preserved at 1.4 min, but the sen-
sitivities to the other statistics decrease markedly at the smallest
check size.

These observations are summarized in Table 5. An ANOVA was
conducted for each image statistic separately, with factors consist-
ing of subject, check size, and polarity (image statistic value >0 vs.
<0). For b�, bn, hy, and a, check size was the main source of vari-
ance; for c, it was significant but a smaller source of variance than
subject. Polarity (image statistic >0 vs. < 0) was a statistically sig-
nificant source of variance for hy and a, but only substantial for
a, consistent with the findings of Fig. 3. There was no interaction
of check size and polarity. Subject-to-subject differences in the
effect of check size (subject � size interactions) were present, but
these only accounted for a small fraction of the variance. There
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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was no significant interaction of subject with polarity and the
three-way interaction (subject � size � polarity) was also not
significant.

The nature of the dependence on check size was quantified by
the scaling exponent, i.e., the slope of the dependency of log(sen-
sitivity) on log(check size). This dependence was smaller for c
(0.094) than for the other statistics (range, 0.119–0.441).
Importantly, this difference was largely due to the behavior at
the smallest check size: when only the three largest check sizes
are considered, the scaling exponents for all image statistics were
small (0.028–0.252).

3.7. Time course of sensitivity

The results presented above showed that the isodiscrimination
surface is approximately elliptical, and the axes of the ellipsoid are
consistent across subjects (Fig. 5) and check size (Fig. 8). While
ellipsoidal contours need not be indicative of underlying mecha-
nisms (Nielsen & Wandell, 1988; Poirson et al., 1990), we consid-
ered the possibility that such a relationship was present.
Specifically, we hypothesized that there are a discrete set of neural
mechanisms that are tuned along the axes of the ellipsoid, and that
stimuli that are aligned to these hypothetical physiological axes
might be processed more readily than stimuli that are oblique to
them. We therefore measured sensitivities in three
image-statistic planes at progressively shorter stimulus durations,
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 7. Sensitivity as a function of check size for the five kinds of coordinates: first-order (c), cardinal second-order ðb Þ, diagonal second-order ðbnÞ, third-order ðhyÞ, and
fourth-order (a). N = 6 subjects for c, b , hy , and a; N = 5 for bn (all but DT). For a, sensitivities for positive and negative excursions are plotted separately as aþ and a� , since
these were systematically different across subjects. Subjects MC, SR, KP, SP, DT, RS.
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Fig. 8. Isodiscrimination contours as a function of check size for three pairwise combinations of the image statistics, in N = 4 subjects. Heavy lines indicate the loci
corresponding to a fraction correct of 0.625, halfway between chance and perfect, for each check size. Thin lines indicate 95% confidence limits via bootstrap, and are omitted
where some bootstrap resamplings had thresholds greater than 1. Subjects MC, SR, KP, and SP.
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Table 5
Analysis of scaling. Upper portion of the table: ANOVA of sensitivities. ⁄ indicates p < 0.05, ⁄⁄ indicates p < 0.01, ⁄⁄⁄ indicates p < 0.001, Bonferroni-corrected. Polarity refers to
positive vs. negative values of coordinates, and Size refers to check size. Lower portion of table: scaling exponents, determined from regression slopes on log–log coordinates.
Values quoted are means and range across all subjects with nonzero thresholds over the specified range of check sizes (N = 6 for c, b , hy , and aþ; N = 5 for bn , N = 4 for a�).

Analysis of Variance

Source c b� bn hy a

frac SS F Frac SS F frac SS F frac SS F frac SS F
(dof) (dof) (dof) (dof) (dof)

Main effects
Subject 0.420 42.349 0.216 19.474 0.148 3.399 0.235 45.427 0.178 30.140

(5)⁄⁄⁄ (5)⁄⁄ (4) (5)⁄⁄⁄ (5)⁄⁄⁄

Size 0.126 21.277 0.367 55.091 0.305 9.305 0.256 82.382 0.243 68.459
(3)⁄⁄⁄ (3)⁄⁄⁄ (3)⁄⁄ (3)⁄⁄⁄ (3)⁄⁄⁄

Polarity 0.016 7.905 0.008 3.635 0.001 0.056 0.042 40.633 0.111 94.238
(1) (1) (1) (1)⁄⁄⁄ (1)⁄⁄⁄

Interactions
Size � Polarity 0.005 0.844 0.003 0.407 0.017 0.533 0.003 1.001 0.007 1.982

(3) (3) (3) (3) (3)
Subject � Size 0.030 1.018 0.047 1.407 0.070 0.532 0.089 5.741 0.073 4.111

(15) (15) (12) (15)⁄⁄⁄ (15)⁄⁄⁄

Subject � Polarity 0.004 0.433 0.010 17.143 0.004 0.102 0.017 3.302 0.009 1.599
(5) (5) (4) (5) (5)

Subject � Size � Polarity 0.005 0.178 0.019 31.488 0.018 0.141 0.013 0.839 0.030 1.666
(15) (15) (12) (15) (15)

Scaling Exponents

c b� bn hy aþ a�

All check sizes (1.4–14 min)
Mean 0.094 0.302 0.139 0.219 0.343 0.466
Min 0.018 0.170 0.047 0.102 0.073 0.270
Max 0.169 0.403 0.208 0.456 0.969 0.610

Three largest check sizes (2.8–14 min)
Mean 0.141 0.199 0.028 0.058 0.135 0.252
Min 0.056 0.076 �0.062 �0.053 0.072 0.045
Max 0.227 0.323 0.130 0.149 0.303 0.355
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to determine whether image statistics that were aligned to the
axes of the isodiscrimination contours were processed more
rapidly than those that are oblique.

Fig. 9 shows that no such difference could be identified. As
expected, thresholds increased as stimulus duration decreased,
but the threshold-vs.-time curves were parallel for each of the
directions tested, and showed no systematic difference between
directions that were parallel to, vs. oblique to, the axes of the
isodiscrimination ellipsoid. This includes the ðc;aÞ-plane (in which
the isodiscrimination ellipse is aligned with the coordinate axes),
the ðhy; hxÞ-plane (in which the isodiscrimination ellipse is tilted
by 45 deg with respect to the coordinate axes), and the
ðbn; b=Þ-plane, in which the isodiscrimination ellipse is approxi-
mately circular. Similar results were obtained in four other planes
(ðb ;aÞ, ðhy; hpÞ, ðb ; bjÞ, ðb ; bnÞ) in one or two of these subjects.
Thus, threshold-vs.-time characteristics are similar in all tested
directions, and do not suggest the presence of a discrete set of
underlying physiological mechanisms.
4. Discussion

4.1. Results summary

Above we presented a series of measurements of sensitivity to
local image statistics – including luminance distribution, frequency
of edges at different orientations, and frequency of corners at dif-
ferent orientations. Our main findings are, (i), a specific set of sen-
sitivities to individual image statistics, in rank order,
c > fb�; bjg > fb=; bng > a > h, with an approximate fivefold differ-
ence between the largest (c) and smallest (h) sensitivities, (ii) sim-
ilar sensitivities to positive and negative correlations, with the only
exception that sensitivities to positive excursions of the four-point
correlation a was approximately 25% greater than sensitivities to
negative excursions; (iii) interactions between pairs of individual
image statistics that were well-described by a quadratic combina-
tion rule and an ellipsoidal isodiscrimination surface, which pro-
vided accurate predictions of sensitivities to complex
combinations of image statistics, (iv) approximate independence
of sensitivities to individual image statistics and their combina-
tions over the check size range from 2.8 min to 14 min, and (v)
similar dependence of sensitivities to individual image statistics
and their combinations on stimulus duration. All of these findings
were consistent across a subject pool that included naïve and
non-naïve observers, as well as an expert and novices.

4.2. A strategy for characterizing sensitivity to image statistics and
their interactions

To enable the analysis of psychophysical sensitivity to multiple
different kinds of image statistics and their interactions, we took
two steps. First, we reduced the dimensionality of the problem
by restricting consideration to black-and-white images on a lattice
and to image statistics defined within a 2 � 2 block. Second, we
used a coordinate system that was based on a set of parameters
ðfc; b ; bj; bn; b=; hy; hx; hp; hq;agÞ that eliminated many of the depen-
dencies between intuitively-defined image statistics. As described
in Methods and (Victor & Conte, 2012), these statistics parameter-
ize a 10-dimensional space of textures. To examine sensitivities to
one or more image statistics, we used stimuli that were con-
strained by the specific image statistics of interest but were other-
wise as random as possible.

The construction of the stimulus space has several implications
for interpreting our results. As with the familiar three-dimensional
color space, the points in the space correspond to specific stimuli,
line segments between two points correspond to mixtures
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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between the corresponding stimuli, and the dimensions of the
space represent parameters that can be varied independently.
But the underlying geometries of the spaces are different. Color
space is generally thought of as an affine space (Zaidi et al.,
2013), meaning that there is no intrinsic notion of length or angle.
The reason for this is that measurements of lengths and angles
depend on the coordinate system used (since they are computed
from the dot product). In color space, there are many reasonable
choices for coordinate systems (Derrington, Krauskopf, & Lennie,
1984; MacLeod & Boynton, 1979; Wyszecki & Stiles, 1967); each
choice leads to its own set of distances and angles. In contrast,
there is an intrinsic notion of length and angle in the space of
image statistics: length corresponds to performance of the ideal
observer, and a right angle corresponds to statistical independence
(Victor & Conte, 2012). As a corollary, the ideal observer will have a
spherical isodiscrimination surface.

The existence of this intrinsic geometry gives functional signif-
icance to the shape of the human isodiscrimination surface. Just as
a spherical surface corresponds to the performance of an ideal
observer who makes full use of all image statistics, distortions from
the spherical shape are statements about the selective sensitivity
of the human visual system. But only some of the many possible
kinds of distortions are actually prominent. For example, sensitiv-
ities to positive and negative excursions along an axis (i.e., excur-
sions in opposite directions from the origin) might differ, but
with only one exception (positive vs. negative values of a, a 25%
difference), substantial deviations of this kind do not occur. The
main distortion from sphericity is due to selective sensitivity to dif-
ferent kinds of image statistics: as mentioned above, sensitivities
to the image statistics represented by the coordinate axes differ
by approximately a factor of 5, producing a corresponding distor-
tion of the surface.

The way that different kinds of image statistics combine deter-
mines the overall shape of the isodiscrimination surface. In indi-
vidual coordinate planes, we found that cues combine in a
quadratic fashion – in analogy with color space (Macadam, 1942;
Poirson et al., 1990), previous work in color and orientation
(Saarela & Landy, 2012), and extending our recent study in a por-
tion of this space (Victor, Thengone, & Conte, 2013). That is, the
intersection of the isodiscrimination surface with each coordinate
plane is approximately an ellipse.

To move from measurements of pairwise interactions of image
statistics within each plane to a testable model for thresholds for
complex combinations, we assumed that the quadratic combina-
tion rule held in general, and not only within the coordinate planes.
This in turn implies that the isodiscrimination surface is an ellip-
soid. As with any ellipsoid, an ellipsoidal isodiscrimination contour
is completely characterized by its principal axes, which lie in a set
of orthogonal directions that includes the directions of greatest and
least sensitivity. While these axes may be oblique to all of the coor-
dinate planes, they nevertheless are uniquely determined by the
intersection of the ellipsoid with each coordinate plane. We used
this approach (Eqs. (11) and (12)) to determine the principal axes,
and, thereby, to estimate the full isodiscrimination surface. This led
to a predicted direction of maximal sensitivity (direction sym1,
Table 3) that was not aligned to any of the coordinate axes, but
instead consisted of a texture with an excess of white checks
(c > 0), along with an excess of horizontal and vertical edges (neg-
ative nearest-neighbor pairwise interactions b� < 0), and small
amounts of other image statistics. The analysis also predicted that
there was a unique direction in which sensitivity was essentially 0
(direction hvi2, Table 3) – effectively, a texture that was metameric
to random. The predicted sensitivities along these and all other
principal axes were close to the values determined experimentally
(Fig. 6 and Table 4). The quadratic model had similar predictive
accuracy in other selected directions of the texture space. These
local image statistics. Vision Research (2015), http://dx.doi.org/10.1016/
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other directions were unaligned with the coordinate axes or the
principal axes, and were based on topological properties of the cor-
responding textures.

The present approach to analysis of image statistics differs from
that of Portilla and Simoncelli (Portilla & Simoncelli, 2000) in sev-
eral respects. The Portilla and Simoncelli approach uses hundreds
of parameters across many octaves of scale and multiple orienta-
tions. Here, the number of parameters is strictly limited, and we
consider only a single spatial scale, four orientations, and two
luminance values. These differences reflect a difference in goals.
The Portilla and Simoncelli approach supports representation and
synthesis of naturalistic textures with high fidelity; here, our focus
is to understand how image statistics interact and the structure of
the resulting perceptual space. For the latter purpose, it is crucial to
be able to manipulate individual image statistics independently. In
the Portilla and Simoncelli approach, this is not possible – the rep-
resentation is overcomplete, and there are implicit nonlinear rela-
tionships between the parameters. In contrast, the 10 image
statistics used here correspond to 10 degrees of freedom that can
be independently accessed via texture synthesis algorithms
(Victor & Conte, 2012). The resulting textures are highly artificial,
but because of this artificiality, they provide independent probes
of the main image statistics fundamental to form vision (contrast,
edge, and corner).

While each set of measurements here considered only a single
spatial scale of statistics (i.e., a single check size), this is not likely
to place a significant limitation on our conclusions. Over the range
of check sizes from 2.8 to 14 min, the pattern of sensitivities
showed an approximate scale-invariance (Figs. 7 and 8, and
Table 5). At the smallest check size studied (1.4 min), sensitivity
to pairwise and higher-order image statistics was substantially
reduced – an expected finding, since individual checks of this size
are no longer clearly visible. We did not study combinations of
image statistics at two different spatial scales (e.g., b� at one scale
and a at another), but we hypothesize that a quadratic combina-
tion rule will hold in this case as well.

4.3. Symmetry and asymmetry with respect to contrast polarity and
sign of correlation

Our results show that for first-order statistics (c), there is a
modest difference between sensitivity to positive and negative val-
ues: on average, a 7% superiority for c < 0 vs. c > 0, significant
(p < 0.02) across subjects. Negative vs. positive values of c corre-
spond to an excess of black checks vs. an excess of white checks.
This modest superiority for darks over lights is consistent with
the well-recognized superiority for darks over lights in terms of
spatial resolution ((Kremkow et al., 2014) and review therein;
(Zemon, Gordon, & Welch, 1988)), and temporal resolution
(Komban, Alonso, & Zaidi, 2011; Komban et al., 2014), and may
be related to the observation of a perceptual mechanism sensitive
to ‘‘blackshot’’ (Chubb, Landy, & Econopouly, 2004). Physiological
differences between ON and OFF cells that are likely contributors
to these asymmetries are known at the retinal (Chichilnisky &
Kalmar, 2002; Pandarinath, Victor, & Nirenberg, 2010) and cortical
(Xing, Yeh, & Shapley, 2010; Yeh, Xing, & Shapley, 2009) levels.
However, one should be cautious about making a direct connec-
tion: the limiting factor in processing image statistics is not
directly related to resolution; indeed, larger receptive fields may
be more effective than smaller ones in gathering the necessary
information.

The more substantial asymmetry in the present data – the 25%
advantage of positive over. negative values for a – is likely unre-
lated to black/white asymmetries. This is because a is computed
from the product of the contrast value at four points, so inverting
contrast of the image (i.e., swapping black for white) does not
Please cite this article in press as: Victor, J. D., et al. A perceptual space of
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change its value. Conversely, for both a > 0 and a < 0, on-axis
images have a 50:50 mix of blacks and whites. We hypothesize
that the asymmetry for a has another origin: that visual analysis
takes place across many spatial scales, and that multiscale analysis
has different implications for positive vs. negative correlations. To
see what these implications are, consider analyzing a checkerboard
texture at a scale that is equal to twice the check size. That is,
instead of computing a from four contiguous checks (e.g., from
checks at positions ði; jÞ, ðiþ 1; jÞ, ði; jþ 1Þ, and ðiþ 1; jþ 1Þ), we
compute it from the four checks at positions ði; jÞ, ðiþ 2; jÞ,
ði; jþ 2Þ, and ðiþ 2; jþ 2Þ. It can be shown that the larger-scale
value of a is related to the original value by alargescale ¼ a4

(Appendix 1 of (Victor & Conte, 1989)). Thus, a texture generated
with a > 0 will have positive values of a when analyzed at this lar-
ger scale as well. But, a texture generated with a < 0 will also have
positive values at this larger scale, as alargescale ¼ a4 is positive even
when a is negative. In sum, positive values of a at one scale will be
reinforced by analysis at larger scales, but negative values of a will
tend to be canceled by positive values when analyzed at a larger
scale. We hypothesize that this cancellation results in a somewhat
lower sensitivity when statistics are pooled across spatial scales. Of
note, larger signal sizes for a = +1 (‘‘even texture’’) than for a = �1
were also found in the visual evoked potential (Victor & Conte,
1989). No comparable asymmetry between positive and negative
pairwise correlations (the b’s) was seen. We hypothesize that this
is because pooling across spatial scales is less prominent for anal-
ysis of two-point interactions.

5. Conclusion

Local image statistics form a domain that is complex both
because of its high dimensionality and geometric considerations
that make them interdependent. Restricting attention to two lumi-
nance values and a single spatial scale leads to a 10-parameter
space of image statistics that includes variations in luminance,
contrast, orientation content, and corner. Within this space, visual
sensitivities are stereotyped across human observers, and a simple
quadratic combination rule suffices to account for thresholds to
combinations of multiple statistics.
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