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Abstract

Objective.—Detection and early prediction of mental fatigue (i.e. shifts in vigilance), could be 

used to adapt neuromodulation strategies to effectively treat patients suffering from brain injury 

and other indications with prominent chronic mental fatigue.

Approach.—In this study, we analyzed electrocorticography (ECoG) signals chronically 

recorded from two healthy non-human primates (NHP) as they performed a sustained attention 

task over extended periods of time. We employed a set of spectrotemporal and connectivity 

biomarkers of the ECoG signals to identify periods of mental fatigue and a gradient boosting 

classifier to predict performance, up to several seconds prior to the behavioral response.

Main results.—Wavelet entropy and the instantaneous amplitude and frequency were among the 

best single features across sessions in both NHPs. The classification performance using higher 

order spectral-temporal (HOST) features was significantly higher than that of conventional 

spectral power features in both NHPs. Across the 99 sessions analyzed, average F1 scores of 

77.5%±8.2% and 91.2%±3.6%, and accuracy of 79.5%±8.9% and 87.6%±3.9 % for the classifier 

were obtained for each animal, respectively.

Significance.—Our results here demonstrate the feasibility of predicting performance and 

detecting periods of mental fatigue by analyzing ECoG signals, and that this general approach, in 

principle, could be used for closed-loop control of neuromodulation strategies.
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1. Introduction

Performance of simple tasks, when repeated over extended periods of time, requires 

considerable ‘mental effort’ [1]. As the number of repetitions increases along with time on 

task, error rates increase and subjects report experiencing a sense of ‘mental fatigue’. It is 

well known that the ability to be vigilant, to maintain attention on specific aspects of a task 

over time, degrades as arousal level and motivation decrease. These changes in attentiveness 

and engagement correlate with changes in physiology: reaction times slow, blood flow to the 

anterior forebrain decreases[2], and wide-spread synchronization of brain activity in the 

theta and alpha bands increases [3].

While most healthy subjects will experience a decrease in vigilance while performing tasks 

requiring focused attention over extended periods, individuals who have suffered a traumatic 

brain injury (TBI) are more quickly fatigued by the repetition of even simple tasks [4]. 

Furthermore, during periods of ‘mental fatigue’ these individuals demonstrate physiological 

responses similar to normal subjects executing difficult tasks over long periods of time [5]. 

Currently, no medication or device-based therapies can treat chronic dysfunctions of arousal 

regulation and cognition in these patients.

We previously demonstrated [6] that therapeutic use of central thalamic deep brain 

stimulation (CT-DBS) was able to restore fluent communication, executive function and 

motor control in a severe TBI patient who had been in a chronic minimally conscious state 

(MCS) for six years prior to CT-DBS. In a more recent study, an individual who for 18 years 

suffered from chronic mental fatigue and impaired cognitive function following a severe 

TBI, showed a concomitant restoration of executive function and a marked reduction of 

mental fatigue and daily napping with the application of CT-DBS [7]. Thus, DBS, when 

delivered during periods of mental fatigue, could potentially alleviate periods of inattention, 

drowsiness, and confusion experienced by the majority of TBI patients. While most 

therapeutic applications of neurostimulation are open loop, that is without feedback control 

linked to neuronal activity or the patient’s state, the greatest promise for these patients may 

depend on the development of closed-loop DBS technologies. However, the key to an 

effective closed-loop system will be the ability to robustly determine the onset or persistence 

of mental fatigue by analyzing brain activity in real-time. This general approach was 

successful in closed-loop (or adaptive) stimulation strategies for epilepsy [8, 9], movement 

disorders such as Parkinson’s [10, 11], and memory recall in epilepsy patients [12].

Effective closed-loop control could be implemented by identifying robust 

electrophysiological biomarkers linked to shifts in arousal and cognitive state. In prior 

studies we showed that behavioral performance in a sustained attention task correlates with 

marked changes in neural activity in the central thalamus [13], prefrontal cortex and dorsal 

striatum of intact NHPs [14]. For example, during the delay periods of correctly performed 
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trials, firing rates of single neurons in the central thalamus significantly increased [13], and 

the power spectra of local field potentials (LFP) recorded in the frontal cortex and striatum, 

markedly shifted from lower to higher frequencies [14]. These electrophysiological 

signatures were linked to behavioral performance and state and were robust across 

experimental sessions and animals and inspired our approach here to seek additional features 

based on the spectral and temporal characteristics of global cortical activity that could be 

used in closed-loop control of DBS.

A key component of an effective closed-loop control system is a robust and efficient method 

for identifying electrophysiological biomarkers linked to specific brain states. The 

development of signal processing tools for the automated detection of shifts in arousal, task 

engagement, wakefulness, and vigilance has received considerable attention in human 

studies [15]. Readily recognizable features of the electroencephalogram (EEG), such as 

spectral peaks in the theta, alpha, and beta bands, which have been demonstrated to provide 

a window into brain states of arousal and consciousness [16], have led to the development of 

signal processing tools for automatic detection of brain states. The buildup of sleep and 

drowsiness has been characterized by increases in the theta and alpha activities as well as a 

decrease in the beta band [17, 18]. Studies employing EEG in humans, as they perform 

simple computer-based tasks [19–23] and neuropsychological tests [24], demonstrated 

consistent shifts in frontal theta and midline alpha power in the EEG. A combination of EEG 

sub-bands such as [theta + alpha]/beta was also shown to be useful for the detection and 

quantification of alertness levels [25].

However, more advanced decoders based in part on machine learning (ML) that employed 

multiple spectral power features from each EEG channel, showed significant improvement 

over conventional methods for predicting a driver’s vigilance in real time [26]. For example, 

support vector machine (SVM) classifiers can be trained on spectral features recorded from 

the occipital cortex to detect sleep or states of vigilance at a level of performance >90% [26–

28]. In a study of auditory vigilance, where subjects were required to perform an auditory 

vigilance task every hour over a 25 h period of sleep deprivation, a probabilistic multi-class 

SVM utilizing the activity in the delta, theta, alpha, and beta bands in the EEG, had an 

accuracy of 87.2% in assigning the subjects to a behaviorally scored level of mental-fatigue 

based on the EEG signals alone. In another study [20], a mental arithmetic task was 

continuously performed by the subjects until they quit from exhaustion or 3 h had elapsed. It 

was shown that the induced mental fatigue was associated with increased power in parietal 

alpha and frontal theta. By employing the spectral features of EEG and a kernel partial least 

squares classifier, the classification accuracy between alert and fatigued task periods reached 

91 %–100%.

The majority of previous efforts to detect mental fatigue and drowsiness have focused on 

classical spectral power features [29]. However, in a recent study, a complex spectrum-based 

decoder was proposed for the prediction of eye movement goals from LFPs in two macaque 

monkeys during memory-guided saccade tasks [30], demonstrating a significant 

performance improvement over conventional spectrum-based decoders. Moreover, spectral 

power features, in contrast to a network measure such as fixed canonical correlation, were 

not able to distinguish task/non-task engagement in humans [31].
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Here we trained two NHPs to perform a visuomotor reaction-time task similar to those used 

to study vigilance and performance in humans [32–36]. In a prior study [14] we analyzed 

neuronal activity recorded from the prefrontal cortex and dorsal striatum to study the 

mechanisms of CT-DBS during task performance. In this study, we analyze the 

electrocorticography (ECoG) activity that was recorded broadly across all cortical regions in 

the same NHPs [14] as they performed the task across experimental sessions. We used 

simple spectral features in addition to higher order spectral-temporal (HOST) features such 

as wavelet entropy, instantaneous amplitude and frequency, measures of inter-areal neural 

interaction or connectivity (e.g. partial directed coherence and phase locking index), to 

develop a classifier for predicting when the animals failed to perform the task correctly. 

Extension of this general approach to real-time applications and ultimately for closed-loop 

stimulation is the subject of our ongoing and future studies.

2. Data acquisition and methods

The goal of this study was to classify performance using modern machine learning (ML) 

techniques combined with spectrotemporal and connectivity (coherence) biomarkers 

extracted from multi-channel ECoG signals recorded widely across cortical regions of 

healthy behaving non-human primates (NHP). The results described here are a first step in 

the development of an algorithm that can predict performance decrements associated with 

mental fatigue in healthy animals. Such algorithms could be integrated into adaptive (i.e. 

closed-loop) deep brain stimulation strategies to restore performance when periods of mental 

fatigue are predicted.

2.1. Electrodes and non-human primates

The use of non-human primates (NHP) as a model system in neuroscience [37] and in the 

development of DBS for movement disorders [38] is well-established. The frontal cortex of 

NHPs is structurally and functionally similar to humans [39, 40] and their ability to learn 

and perform a wide variety of complex cognitive tasks [41] makes them an ideal model to 

study mechanisms of arousal regulation during cognitively demanding tasks over extended 

periods of time [42].

All experiments were performed in strict accordance with the National Institutes of Health 

guidelines for use of animals in research and under an approved protocol from the Weill 

Cornell Medical College Institutional Animal Care and Use Committee (IACUC). A detailed 

description of the surgical techniques, behavioral control and data acquisition systems can 

be found elsewhere [43, 14]. In brief, two male adult monkeys (10 and 11 kg), macaca 

mulatta, were trained over the course of 6–8 months to sit quietly in a special-purpose 

primate chair (Crist Instruments Company, Hagerstown, MD) and carry out behavioral tasks 

in order to receive sips of water. With positive reinforcement alone, it was possible to train 

the animals to move calmly from their home cage to the chair, accept head restraint, work 

for water on a wide range of cognitive tasks, and to return calmly to their home cage at the 

end of the experimental session.

At the conclusion of initial period of training, the animals were implanted with cephalic 

recording chambers (Gray Matter Research, Bozeman, MT, USA) and a custom built 10-
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channel epidural ECoG array using sterile surgical technique [43, 14]. The ECoG array 

consisted of 4 mm Ag-AgCl electrodes (BioPac Systems Inc., Goleta, CA) fixed to 2×6 mm 

titanium bone screws that penetrated the skull to collect epidural and in some cases subdural 

signals from the overlying cortex, figure 2. The ECoG signals were collected from left and 

right occipital (LO and RO), temporal (LT and RT), frontal cortices (LFL, LFM, RFL and 

RFM) and midline structures (FZ, CZ). All neurophysiological signals were recorded using 

an RZ2 data acquisition system (Tucker Davis Technologies, Alachua, FL). The ECoG 

signals were recorded using low-impedance headstages (RA16LI and RA16PA) and Medusa 

preamplifiers at 1017.6 Hz and 508.6 Hz sampling rates and down-sampled to 508.6 Hz for 

the subsequent data analysis.

2.2. Vigilance task and experimental sessions

Two NHPs were trained to perform a visuomotor reaction-time task (i.e. vigilance task), that 

required sustained attention and fixation of a visual target over delay periods several seconds 

in duration. The vigilance task started with the appearance of the target (a 2 degree black/red 

checkerboard or dartboard) at one of 9 locations, chosen at random on each trial, on a CRT 

monitor positioned 113 cm in front of the animal. After a 1 second period of stable fixation, 

the target underwent color contrast reversal at 10 Hz for a variable delay period until 

switching to a black/green checkerboard or dartboard, as illustrated in figure 1(a). The 

transition to black/green from black/red was the ‘GO’ signal for the animal to make contact 

with an infrared touch switch (Crist Instruments) located within the primate chair, for a juice 

reward (0.2–0.4 ml). The variable delay period was randomly drawn from a normal 

distribution with mean of 2500 ms and standard deviation of 250 ms. A trial was considered 

to be incorrect if the NHP broke fixation prior to the ‘GO’ cue or touched the IR switch 

before or within 200 ms after the ‘GO’ cue or failed to respond within 800 ms after the ‘GO’ 

cue. ECoG signals were collected as the animals performed the vigilance task. All sessions 

in this study included periods of continuous central thalamic deep-brain stimulation (CT-

DBS) [14], but here we restrict our analysis to trials during the non-DBS periods. In total, 99 

experimental sessions were analyzed (55 for NHP1 and 44 for NHP2). DBS was not used 

during the experimental session shown in figure 1.

Performance of the vigilance task was generally high at the start of each recording session 

and gradually decreased over time, as shown in figure 1(b). Performance decrements 

typically included both an increase in the number of incorrect and/or incomplete trials and 

greater variance in reaction times. The power spectrum across each single trial during the 

first second of the delay period is shown in figure 1(c), while the corresponding wavelet 

entropy (as one of the proposed biomarkers, section 2.3.2), is shown in figure 1(d), 

indicating that the incorrect trials generally have lower values of wavelet entropy as 

compared with correct trials.

2.3. Methods and performance evaluation

We examined several time periods during each trial in a session to determine if the features 

that contribute to classification are influenced by the various stages of behavior performed 

on each trial, and how those changes influence classification. As shown in figure 1(a), we 

defined the following three periods of time for performance evaluation: 1. Pre-target period 
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(from trial start to the appearance of the target); 2. Target period (1 s starting from the onset 

of the visual target); 3. Delay period (1 s starting from the onset of the cue for the start of the 

delay period). Our main results in this study are focused on the delay period.

2.3.1. Eye movement signals—ECoG recordings of neural activity from alert subjects 

are impacted by eye movements, both by the electrical potential produced by the moving eye 

and any neurogenic activity generated by visuomotor processing [44, 45]. In this study, we 

applied independent component analysis (ICA) to reduce the eye movement contribution to 

the analyzed signals. Fast ICA was used to decompose the raw signal into independent 

components [46] and those that were determined to be correlated strongly with eye 

movements were removed (i.e. correlate with frontal channels). For this, we calculated the 

Pearson correlation between the components and the frontal channels LFL and RFL; if the 

correlation surpassed 0.1 (set empirically), the corresponding components were removed and 

the remaining components were transformed back to the original signal space 

(supplementary figure 1 (available online at stacks.iop.org/JNE/18/036001/mmedia)). We 

compared the characteristics and classification performance of ICA-corrected ECoG signals 

against those without the ICA pre-processing stage.

2.3.2. Neural biomarkers of fatigue—In order to accurately and robustly predict the 

animals’ performance in the vigilance task, we extracted the following set of biomarkers 

(table 1) from each ECoG channel in the examined epoch of the trials: Spectral power in 

multiple frequency bands as detailed in table 1; Wavelet entropy, which reflects the degree of 

order/disorder associated with a multi-frequency signal [47] and has been shown to 

differentiate between different brain states [48, 11]; the Hjorth parameters indicating the 

statistical properties of neural signal in the time domain [49], including the Hjorth activity as 

a measure of signal variance, Hjorth mobility representing the mean frequency of a signal, 

and Hjorth complexity representing the frequency changes over time; Phase-amplitude 

coupling (PAC) between the phase of theta (here, 3–7 Hz) and amplitude of gamma (here, 

70–130 Hz) band activity [50–52]. We also extracted the instantaneous amplitude (IA) over 

the delta band by computing the modulus of the analytic signal across the delta frequency 

range, as well as the instantaneous frequency (IF) indicating the shift in the frequency 

content in theta-alpha band (here, 4–14 Hz [53]), and the ratio between these two values. 

The instantaneous frequency was calculated by taking the time derivative of the phase of the 

analytic signal. The IA/IF ratio has been shown to be effective in pinpointing the onset of 

drowsiness in ECoG studies on epilepsy patients [53]. All of these biomarkers from 

individual ECoG channels were included as features for classification.

In addition to single channel measures, we also included as features for the classification 

stage spectrotemporal connectivity measures involving multiple ECoG channels. We 

extracted the partial directed coherence (PDC) within the delta, theta, alpha and beta bands 

[23] across all pairs of channels, and the global coherence [54] within all sub-bands by 

utilizing all of the ECoG channels. We also computed the Phase Locking Index (PLI) [55] 

between the pairs of ECoG channels within delta, theta, alpha and beta bands.

2.3.3. Feature selection and classification—In this work, we used the gradient-

boosting decision tree ensemble (the XGBoost package in Python) as the classifier [56], 
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given its high performance in several prior studies on neurophysiological signals [11, 57–

60]. Particularly, this model was shown to perform best among other ML models in epileptic 

seizure detection from ECoG [57, 61] and Parkinsonian tremor detection from LFP [11, 59]. 

Moreover, in our preliminary study on this ECoG dataset, XGB outperformed several other 

ML models such as linear discriminant analysis (LDA) and support vector machine (SVM) 

with different kernels. We built a gradient-boosting model with 30 trees, and a maximum 

depth of 4 to avoid overfitting, and trained a subject-specific model to predict the trial 

outcome. The number and maximum depth of the trees were fixed based on our initial study 

on this dataset that led to a high classification performance in both animals. We used the F1 

score to report the performance of the classifier in detecting incorrect trials, defined as the 

harmonic mean of sensitivity (TP/(TP+FN)) and precision (TP/(TP+FP)), i.e. 

F1 = 2 ⋅ precision⋅sensitivity
precision+sensitivity , with TP representing the number of true positives, FP 

representing the number of false positives, and FN representing the number of false 

negatives. Here, the target positive class is the incorrect trial. The F1 score ranges from 0 to 

1, with higher values representing a better performance. A nested 5-fold cross-validation 

method was used to calculate the F1 score, in which the inner loop was used to tune the 

parameters of each model (e.g. the optimal number of features as described below), and the 

outer loop to estimate the performance on the test set. We also report the accuracy, 

sensitivity, and specificity of our classifier, all measured with 5-fold cross validation.

While the inherent feature selection capability of the tree-based gradient boosting algorithm 

allowed a broad feature search in our study, a more rigorous feature selection step could 

further improve the performance and reduce the risk of overfitting. Here, a wrapper-based 

approach [62] was used to identify the most discriminative features as they were fed to the 

XGB model. The algorithm starts by finding the best single feature that achieves the highest 

F1 score on the training set, measured by 5-fold cross-validation (the inner loop of the 

nested cross-validation). It then continues to add the next ‘best feature’ in each iteration, 

until a near-optimal performance is achieved. The final performance is then reported on the 

held-out test set using the selected features.

2.3.4. Statistical analysis—One-way ANOVA with repeated measures was used to 

study the difference in classification performance obtained by different features. We used the 

MATLAB function ANOVA (MATLAB version R2018b) for the statistical analysis 

performed in this work. For cases with a significant main effect, Bonferroni correction was 

used for post-hoc analysis. A paired sample t-test was used to infer whether the performance 

of our proposed HOST feature set was significantly higher than that of using only the 

spectral power features.

3. Results

The power spectrum correct and incorrect trial responses for each recording channel are 

shown in figure 2, illustrating higher spectral power (below 13 Hz) in incorrect trials as 

compared to the correct trials (the time-frequency plot of each channel during the delay 

period for correct and incorrect trials is shown in supplementary figure 2). The use of ICA 

does impact the distribution of power in the spectra calculated for ECoG signals in specific 
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channels. Figure 3 shows the power spectrum for correct and incorrect trials in NHP1 and 

NHP2, at channel CZ without using ICA (figures 3(a) and (b)), and with using ICA (figures 

3(c) and (d)). It can be seen that in both NHPs, the power spectrum for incorrect trials is 

significantly higher than for correct trials, between 1 and 10 Hz. While the ICA step did not 

significantly change the power spectrum at channel CZ, the power spectrum for frontal 

channel LFL is markedly reduced with the application of ICA, figures 3(e)–(h). Note 

however that the power spectra for incorrect trials is still significantly higher than that for the 

correct trials, in the lower frequency bands (<10 Hz).

The performance of the classifier when only one channel is used for classification, is shown 

in figure 4. Without ICA, the frontal channels such as LFL and RFL exhibited a higher 

performance compared with other channels, figure 4(a). Following ICA removal, however, 

all channels obtained a nearly similar performance, as shown in figure 4(b).

The feature distribution of several biomarkers from table 1 is shown in figure 5, for the two 

NHPs. The two features with the highest R2 value are shown in each case, where R2 

represents the square of Pearson correlation coefficient between a feature and the 

corresponding label (i.e. correct or incorrect class). As illustrated in this figure, the wavelet 

entropy features (wavelet entropy 1 and 2, extracted from two different channels) were 

highly discriminative for correct versus incorrect trials of NHP1, with the incorrect trials 

exhibiting a lower wavelet entropy, figure 5(a). Similarly, the Hjorth mobility is a highly 

discriminative feature for NHP2, where incorrect trials have a lower mobility compared to 

correct trials, figure 5(d).

In contrast to methods such as deep neural nets (DNNs), decision trees are generally 

interpretable and provide useful insights on the contribution of different features to the 

classifier’s performance. In this study, we first compared the performance of individual 

features in classification, each extracted from all channels or from a combination of 

channels. We observed a significant difference between the performance of various 

biomarkers in NHP1 (the black boxplots in figure 6(a), F(16,864) = 71.0, p = 4.1e−145), and 

NHP2 (the red boxplots in figure 6(a), F(16,688) = 27.0, p = 2.8e−62). The IAIF feature 

obtained an average classification performance of 77.6%±7.6% in NHP1, while the wavelet 

entropy obtained an average performance of 90.0%±4.2% in NHP2, outperforming other 

features in each case. Furthermore, figure 6(b) shows the percentage of selection by wrapper 

method for each feature type in table 1 (i.e. in what percentage of sessions a feature is 

selected by the wrapper algorithm). This figure shows that PDC and PLI were frequently 

selected as predictive biomarkers in both NHPs. figures 6(c) and (d) show the feature 

dynamics across trials for both NHPs. Interestingly, we can see that compared with a widely 

used feature such as low beta power, the features of PDC and wavelet entropy exhibited a 

higher discriminative power between correct and incorrect trials in this study.

Figure 7(a) shows the performance of the classifier during delay period (using the first 1 s or 

0.5 s of delay period), as the number of features selected by wrapper method increases 

(verified on the training data). In both NHPs, the cross-validation performance saturates by 

using as few as 5–10 features per session. Moreover, a window size of half a second during 

delay period showed comparable performance to a one second window in the same period. 
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The selected features were next used to measure the performance on the held-out test set for 

each NHP (figure 7(b)), using the activity from various time periods prior to the ‘GO’ 

response. As shown in figure 7(b), in both NHPs the classifier performance over delay 

period is significantly higher than the performance over target and pre-target periods, 

surpassing the baseline performance obtained by an all-positive detector (the dashed line in 

figure 7(b), corresponding to a baseline F1 score of 66% and 84 % for NHP1 and NHP2, 

respectively). figure 7(c) shows the performance of the classifier over delay period (1 s) and 

across sessions, reaching an average F1 score of 77.5%±8.2% for NHP1 and 91.2%±3.6 % 

for NHP2, respectively. Moreover, we compared the classification performance using 

conventional band power features (i.e. including the spectral power features from multiple 

frequency bands as detailed in table 1), with that of using higher order spectral-temporal 

(HOST) features (all features in table 1 excluding the spectral power features), and with the 

combination of both feature sets. As depicted in figures 7(d)–(f), for NHP1, the 

classification accuracy, F1 score, and sensitivity of the HOST feature set were all 

significantly higher than those of the conventional spectral features (p < 0.001); forNHP2, 

the classification performance of the HOST features was significantly higher than that of 

spectral features (p < 0.001 for accuracy, p < 0.01 for F1 score, and p < 0.05 for sensitivity). 

Furthermore, adding the spectral features to the HOST feature set did not significantly 

improve the classification performance.

The behavioral performance at the start of the experiments was 65.5%±14.4% and 66.0%

±19.4 % for NHP1 and NHP2, respectively (the number of correct trials divided by the total 

number of trials at the beginning of each session prior to the first use of DBS, mean ± SD). 

Our proposed feature set and machine learning approach obtained an F1 score of 77.5%

±8.2% for NHP1 and 91.2%±3.6% for NHP2, in detecting incorrect response trials. 

Furthermore, table 2 summarizes the classification performance over the delay period (1 s), 

using different metrics such as sensitivity, specificity, accuracy, and balanced accuracy (the 

mean of sensitivity and specificity, to account for the unbalanced distribution of correct and 

incorrect trials across subjects).

4. Discussion

In this study, we developed a classifier for predicting correct vs incorrect trial outcomes 

based on a set of biomarkers extracted from multi-channel ECoG recordings of brain 

activity. By employing a subset of 5–10 optimal features, trial outcomes were predicted with 

high accuracy, using the spectrotemporal activity recorded across the brain during the early 

part of the delay period in the task. Power in the lower frequency bands (delta and theta) 

contributed to classification in both NHPs. We considered that eye movement potentials may 

significantly contribute to the overall power in the delta band. So we used ICA to remove the 

eye movement potentials (supplementary figure S1), and as expected, the contribution of the 

delta band was significantly reduced. This finding raises a general point about the analysis of 

‘noisy’ ECoG and EEG data. Multi-channel brain signals may be contaminated by 

behavioral movement signals, both as artifacts and movement related neurogenic potentials. 

While these noise components may not tell us directly about brain states of sustained 

attention or mental effort, they may be useful for identifying behavioral states of distraction 

and inattentiveness that are often associated with intrusive eye movements.
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We acknowledge that the use of eye movements as measure of attentional state must be 

qualified with a specification of the nature of the behavioral task at hand. For example, tasks 

requiring fixation of a target that will provide a go-signal or instructions for the correct 

behavioral response in a trial, recruit a number of cortical and subcortical brain areas to 

produce the control signals that suppress spontaneous eye movements, or saccades to 

irrelevant features or the wrong visual target [63]. Inactivation of the superior colliculus [64] 

or the basal ganglia [65] with muscimol (a chemical agent that inhibits the activity of 

neurons) will increase the frequency of intrusive saccades and the inability to suppress a 

saccade to a distracting visual signal. We suggest that mental fatigue acts much like an 

increase in inhibition of the brain areas involved in suppressing saccades, but through a 

reciprocal process; i.e. a withdrawal of neural excitation in these areas, not an increase in 

inhibition. However, if a task requires that the subject search a visual scene for a target with 

their eyes, then attentiveness would typically be positively correlated with an increase in the 

number of saccadic eye movements [66]. On the other hand, as a subject becomes drowsy, 

eye movements can decrease to the point where eye movements cease altogether, a 

phenomenon known as a blank stare [67]. In the task used in the experiments described here, 

the NHPs were required to restrict their eye movements to within a few degrees of a fixation 

target in order to perform the task correctly. Thus, eye movements during the delay period 

could be classified as intrusive saccades and their appearance correlated closely with poor 

task outcome.

Several human EEG-based studies have used frontal theta and midline alpha power as 

features for detecting changes in brain state associated with fatigue during driving and other 

experimental tasks [17, 18, 24]. Real-time monitoring of these signals was successfully 

integrated into real-time detection and reporting systems. In this study, we employed a 

variable delay period reaction-time paradigm to induce mental fatigue and influence task 

performance, and introduced new biomarkers for quantifying correct and incorrect responses 

during the task. In addition to relatively simple spectral features such as theta power, we 

found that other complex spectrotemporal features also contributed significantly to the 

performance of the classifier. For example, among single channel features, measures of the 

wavelet entropy of the spectrogram were important. Multi-channel measures computed 

across the spectrum, such as global coherence, also aided in classification. However, the 

wavelet entropy, Hjorth activity and mobility, and IAIF features were best at differentiating 

correct and incorrect responses in the two NHPs. Moreover, the PDC, PLI, IAIF and wavelet 

entropy were among the features most often selected during the feature selection process. 

Interestingly, the cross-regional connectivity measures such as PDC and PLI were frequently 

selected as predictive biomarkers of performance in both NHPs (figure 6(b)). This is 

consistent with recent studies that employ cross-regional coherence for decoding cognitive 

control tasks, where single-region spectral features only obtain a chance level of 

performance [31]. There is increasing evidence that network measures play a key role in 

predicting mental state and task engagement [68], and may provide a robust marker to 

control adaptive stimulation therapies for mental [31, 69] and movement disorders [70].

Our long-term goal is to robustly detect shifts in brain state, specifically to identify periods 

of mental fatigue in order to intervene using deep brain stimulation to shift global cortical 

activity into a state where cognitive resources can be better recruited. We show here that a 
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set of spectrotemporal biomarkers can be used by a classifier to predict trial outcome, and 

that delay period activity, as opposed to earlier periods in the trials, provides the best 

predictive samples of brain activity (figures 7(a) and (b)), and that classifier performance can 

fluctuate across experimental sessions (figure 7(c)). Our multi-channel ECoG 

spectrotemporal biomarkers were sensitive to the eye movement potentials generated during 

the task, and as a consequence, the classifier could exploit this sensitivity to reach high 

predictive accuracy for trial outcome. The eye movement potentials were most prominent in 

the four frontal electrodes (LFL, RFL, LFM, RFM). The signals in these channels 

contributed significantly to the classifier’s performance. If we removed the four frontal 

channels, and relied only on the remaining six (as done in our preliminary study [71]), 

classifier performance (F1 score) was reduced to 63.8 % and 87.2% for NHP1 and NHP2, 

respectively. The sensitivity of the classifier for the two NHPs when frontal channels were 

removed is 63.2% and 90.6 %, respectively, while the specificity values are 64.0% and 

45.3%, respectively. It is important to note that the difference in the obtained levels of 

accuracy, F1 score, sensitivity and specificity for the two NHPs is partially due to the 

unbalanced distribution of correct and incorrect trials in NHP2 (202±129/518±165) while 

the distribution of trials in NHP1 is more balanced (254±131/270±148). As a result of higher 

number of incorrect trials in NHP2, we observe a higher sensitivity (TP/(TP±FN)) and a 

lower specificity (TN/(TN±FP)), as well as a higher F1 score and accuracy. Thus, the 

‘balanced accuracy’ measure (the mean of sensitivity and specificity) was also reported 

which is a common approach to evaluate the performance on unbalanced datasets. There was 

around 20% difference in predictive accuracy between NHP1 and NHP2, however they have 

similar balanced accuracy (77.0% vs. 79.3%) and the predictive accuracy of both NHPs was 

significantly above random level.

The performance of the single-trial classification can be influenced by different periods of 

the task period. The pre-target period (Trial Start in figure 1) and the target period (Target in 

figure 1) showed a similar performance of around 54% in NHP1 and 83% in NHP2. 

Furthermore, the performance during the delay period was around 20% higher than the 

target period in NHP1 and around 8% higher in NHP2. By employing a short time window 

of half a second, we found that we can achieve similar performance as compared with a 

window of one second in duration in both NHPs. A shorter window would have a faster 

detection and lower latency in real-time settings, and should be considered for future closed-

loop systems using these candidate biomarkers.

We limited our current work to single-trial classification in an offline setting, and focused on 

the delay period of a simple reaction time task paradigm. In the current work we sought to 

answer if the correct and incorrect behavioral responses could be correctly predicted from 

neural activity in a time period occurring several seconds prior to the actual motor response. 

By integrating the conventional spectral features and several new features, we were able to 

correctly predict task performance by classifying the brain states associated with correct and 

incorrect behavioral responses. These results provide strong support for developing a system 

that can use multi-channel ECoG data to identify brain states associated with poor attention 

and fatigue.

Yao et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2022 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The focus of current study is on high-accuracy subject-specific prediction in each NHP, 

where we observe different levels of predictive performance in the two animals. In order to 

generalize the proposed approach across subjects, one may train the classifier on a 

sufficiently large number of NHPs and test the resulting model on a new subset of animals, 

an approach that is being investigated in our future work.

5. Conclusion

In this study, we employed modern machine learning techniques to analyze ECoG signals 

sampled diffusely across the cortical surface of two NHPs as they performed a vigilance task 

requiring sustained attention over extended periods of time. We identified several features in 

the ECoG signals that robustly predicted behavioral performance in both animals and across 

recording sessions. Specifically, we found that higher-order spectral-temporal (HOST) 

features outperformed conventional spectral features. These results support our efforts of 

developing robust algorithms to predict performance and periods of mental fatigue in 

behaving animals. In principle, the approach developed here could be used in adaptive 

therapeutic interventions, like DBS, to restore arousal regulation, which is impaired in 

patients with structural brain injuries. However, the translation of this approach to humans 

will require studies that focus on the development of biomarkers linked to impaired 

cognition and executive function in patients.
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Figure 1. 
(a) Structure of the vigilance task. (b) Behavioral performance of NHP2 during 1180 trials. 

The performance estimate is shown as a smoothly varying green line and reaction times of 

correctly performed trials are plotted in black (total time on task: 128 min). (c) The power 

spectra of the signal collected from the midline frontal ECoG electrode (FZ) across trials. (d) 

The corresponding wavelet entropy calculated during the delay period for correct (blue) and 

incorrect (red) trials.
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Figure 2. 
The power spectrum of correct and incorrect response trials from each ECoG channel for 

NHP1 and NHP2. In each subplot, the left figure corresponds to NHP1 while the right one 

corresponds to NPH2. Note that the range of y-axis is different between the two NHPs and 

on different electrodes. The black circles illustrate the locations of the cephalic chambers 

implanted in both animals.
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Figure 3. 
The power spectrum in NHP1 and NHP2 from midline ECoG channel CZ (left) and the 

frontal ECoG channel LFL (right). (a), (b) The power spectrum at CZ in NHP1 and NHP2, 

without using ICA. The thickness of the curves for the spectra indicates the standard error of 

the power estimates across sessions. (c), (d) The power spectrum at CZ in NHP1 and NHP2 

with ICA. (e), (f) The power spectrum at LFL in NHP1 and NHP2 without using ICA. (g), 

(h) The power spectrum at LFL in NHP1 and NHP2 with ICA. Note that the range of y-axis 

is different before and after ICA.
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Figure 4. 
Channel importance analysis. (a) The performance of the classifier for NHP1 and NHP2, 

using all features from single electrodes. The error bars indicate the standard error. (b) The 

performance of a classifier built on individual channels for NHP1 and NHP2 after applying 

ICA. The use of ICA stabilizes the contribution of ECoG channels to the performance of the 

classifier. Note that without ICA, the LFL and RFL channels located at the front of the head 

nearest the eyes, make a significant contribution to classifier performance in both animals.
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Figure 5. 
Feature distribution between correct and incorrect trials showing the separability of two 

classes. (a) Distribution of wavelet entropy features in NHP1. (b) Distribution of IAIF 

features in NHP1. (c) Distribution of PDC features in NHP1. (d) Distribution of Hjorth 

mobility features in NHP2. (e) Distribution of IAIF features in NHP2. (f) Distribution of 

PDC features in NHP2. In each case, the two features that exhibit the highest R2 value with 

class label are used to plot the feature distribution.
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Figure 6. 
(a) The boxplot of individual feature performance, using all electrodes in NHP1 (black) and 

NHP2 (red). (b) The percentage of feature selection by wrapper method. If a feature was 

selected more than once in a session (e.g. from two different channels), it was counted as 

one selection. (c) The feature dynamics across trials for one session from NHP1, with the 

upper of the three plots corresponding to low beta power, the middle of the three plots 

showing the wavelet entropy, and the lower plot showing the PDC. (d) The feature changes 

across trials for one session from NHP2, with the upper plot corresponding to low beta 

power, the middle plot showing the wavelet entropy, and the bottom plot showing the PDC. 

For both (c) and (d), correct trials are blue and incorrect trials are red.
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Figure 7. 
(a) Training performance of the classifier during delay periods versus number of features. 

The most predictive features are iteratively added to the classifier using wrapper approach 

(the shaded area indicates the standard error over sessions). (b) Test performance of the 

classifier in various time periods for NHP1 and NHP2. The horizontal dashed lines indicate 

the baseline performance obtained by an all-positive detector for comparison (i.e. when all 

trials are detected as incorrect). (c) Classifier performance across sessions for NHP1 and 

NHP2. (d) Comparison of classification performance for spectral versus HOST features, and 

the combination of both feature sets. The performance was measured by metrics of accuracy 

(d), F1 score (e), and sensitivity (f), in both NHPs. The top performing features selected by 

wrapper method were used to plot (d)–(f).

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, NS: non-significant.
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