Local statistics in natural scenes predict the saliency of synthetic textures

Gašper Tkačik, Jason S. Prentice, Jonathan D. Victor, and Vijay Balasubramanian

Proc. Natl. Acad. Sci. USA 107, 18149-18154 (2010)

Abstract

The visual system is challenged with extracting and representing behaviorally relevant information contained in natural inputs of great complexity and detail. This task begins in the sensory periphery: retinal receptive fields and circuits are matched to the first and second-order statistical structure of natural inputs. This matching enables the retina to remove stimulus components that are predictable (and therefore uninformative), and primarily transmit what is unpredictable (and therefore informative). Here we show that this design principle applies to more complex aspects of natural scenes, and to central visual processing. We do this by classifying highorder statistics of natural scenes according to whether they are uninformative vs. informative. We find that the uninformative ones are perceptually nonsalient, while the informative ones are highly salient, and correspond to previously identified perceptual mechanisms whose neural basis is likely central. Our results suggest that the principle of efficient coding not only accounts for filtering operations in the sensory periphery, but also shapes subsequent stages of sensory processing that are sensitive to high-order image statistics.


Download
Related paper: modeling discrimination of gray-level textures with spatial correlations
Related paper: informativeness of statistics in natural images and visual salience (binary images)
Related paper: informativeness of statistics in natural images and visual salience (grayscale images)
Related paper: the psychophysical phenomena that are accounted for by this analysis
Publications related to isodipole textures
Return to publications list