Evolutionary convergence in computation of local motion signals in monkey and dragonfly

E.I. Nitzany*a, b, G. Menda, c, P.S. Shamble, c, J.R. Goldene, R.R. Hoya, d, and J.D. Victor*a

Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
*aDept. Biological Statistics & Computational Biology, Cornell University, Ithaca, NY
bDept. Psychology, Cornell University, Ithaca, NY

decision analysis in the primate visual cortex: implications for perception.

Results

Responses of individual neurons

- Macaques: optimized response of an easily-isolated neuron in the V1 area.
- Dragonflies: optimization of a more complex response pattern in the lobula area.

Methods:

- Single-unit recordings using multi-tetrode arrays were performed in awake monkeys and dragonflies.
- Local motion signals were presented using visual stimuli.

Data Analysis:

- Correlations between sensitivity to different motion cues were determined.
- Neural responses to different motion cues were compared across species.

Visual stimuli:

- A 12-point random-dot stimulus was used.
- Motion was presented as a sequence of random displacements.

Directional Index (DI):

- DI = \(\frac{-0.1}{0.1} \)

Sensitivity to multiple kinds of motion across populations:

- Neurons in both species were sensitive to multiple kinds of motion.

Motion Processing Across Brain Areas:

- Neurons in different brain areas showed different sensitivity to motion cues.

Summary and Conclusions:

- Despite extreme differences in evolutionary history and brain structure, macaques and dragonflies process motion cues similarly.

Funding & References:

- This research was supported by the National Eye Institute (U54 EY020482 and R01 EY025884) to J.D.V. and R.R.H.
- The authors thank the Foundation for Research Science and Technology (FRST) for a grant to J.D.V. and R.R.H.