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MAJOR IMPROVEMENT:  N2L   à  NL+1

Key observation:
world lines of spikes from same neuron in either response
cannot cross for minimizing set of transformations.
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Thus, the non-crossing property can be recovered by
separating one of the two responses into its components:

The resulting dynamic programming algorithm’s running time, T, is
now proportional to the total number of spikes in the separated
response instead of the number of spikes in each neuron. For L
neurons, with an average N  spikes each:

T ~ (nA,1 + nA,2 + … + nA,L )*(nB,1 * nB,2 * … * nB,L) ~ NL+1

FURTHER IMPROVEMENT:
PARALLEL COMPUTATION

The above dynamic programming algorithm can be modified to
calculate the minimum total distance required to align the two
responses exactly, given a prescribed number of spikes that are
matched, and a prescribed number of changes of neuron of origin.
This adds a factor of N2 to running time. However, from this
calculation, the distances for all values of q and k can be calculated
rapidly and in parallel.
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spike timing is increasingly important
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Several neurons’ joint response is considered to be a single
sequence of labeled events, with label indicating neuron of origin
(shown below as color.) The distance between two multineuronal
responses, A and B, is defined similarly to the single-neuron case,
but a second parameter, k, is added that expresses the sensitivity
of the distance Dq,k(A,B) to the neuron of origin of spikes. The new
transformation is:

change spike label (neuron of origin): cost=k

At the two extremes:
k=0, neuron of origin is ignored (“summed population code”).
k=2, neuron of origin is fully considered (“labeled line code”).

delete

shift
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shift

shift
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“World lines” of spikes can
cross (e.g., purple arrow,left)
because of the added penalty
(k) for aligning spikes from
different neurons.

There are multiple alternative
fates for the last spike in either
train, including deletion, or
being linked to the last spike of
any neuron in the other
response.

Here, T is proportional to the product of the number of
spikes in each neuron in each response. For L neurons
with an average N spikes each ,

T ~ (nA,1*nA,2* …*nA,L )*(nB,1*nB,2* …*nB,L) ~ N2L

Efficient calculation of distances

In a sequence of transformations that realizes
the minimal total cost, “world lines” of each
spike cannot cross.

For the fate of the last spikes in trains A and B
the only three remaining possibilities are:
• The last spike in train A is deleted.
• The last spike in train B is inserted.
• These spikes are linked by a shift.

Dq(Am,Bn)=min {  Dq(Am-1,Bn)+1,
      Dq(Am,Bn-1)+1

                            Dq(Am-1,Bn-1)+q|tm(A)-tn(B)|},
where
Am      = train of the first m spikes of A, etc.,
tm(A) = the time of the mth spike of A, etc.
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The resulting dynamic programming algorithm has a running time, T,
proportional to the product of the number of spikes in each response.
For an average N spikes per response

T ~ nA*nB, ~ N2

A 2-PARAMETER FAMILY OF CODES
AND METRICS

ANALYSIS OF SPATIAL PHASE RESPONSES
IN MACAQUE VISUAL CORTEX

Responses of three
neurons (simultaneously
recorded with a tetrode)
to pattern-appearance
gratings, as a function of
spatial phase

100 ips

512 ms0 deg 90 deg 180 deg 270 deg

Data from Aronov et al., 2003

q (sec-1)k

  H
  

q (sec-1)k

  H
  

Pairwise analyses

Greater information when
neural identity is retained
(k>0) than when neurons
are pooled (k=0);
meaningful resolution ca.
50 ms (qmax ≈ 20).

Analysis of coding by the triplet

Qualitatively similar to pairwise
analysis: greater information when
neural identity retained (k>0) than
when neurons are pooled (k=0);
meaningful resolution ca. 50 ms
(qmax ≈ 20).

Adding a third neuron only
increases information if k is near 2.
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INTRODUCTION: Why use a metric
space method to estimate information?

For neural systems, the “transmitted information” (Shannon) is the extent to
which observation of a neural response reduces the uncertainty about the
stimulus. Straightforward estimation of transmitted information requires
experimental estimation of the probabilities of all joint stimulus-response events.

The difficulty with this approach is that, in principle, each different spike train
configuration constitutes a different “response.”  Thus, the number of possible
“responses” may be astronomically large, especially for multineuronal activity.
When the set of possible responses is severely undersampled, biases in the
estimates of response probabilities can dominate the estimates of information.
Without an a priori  notion of when two spike train configurations are sufficiently
similar so as to be considered identical, any variation in a response must be
considered as a possible carrier of information.

An alternative approach is to parameterize the problem by a set of “metrics” that
explicitly quantify the extent to which two responses are similar.  This
ameliorates the undersampling problem, but is computationally intensive.  We
present algorithms that make this approach feasible for the study of 3 or more
neurons.

A single parameter, q, expresses the sensitivity of the distance to the
timing of individual spikes.  The distance Dq(A,B) between two spike
trains A and B is the least total cost of any sequence of allowed
transformations from A to B.  The allowed transformations consist of:

insert a spike: cost=1
 delete a spike: cost=1
 shift a spike in time by ∆T: cost = q ∆T

With this notion of distance, spike trains are similar only if spikes occur
at similar times (i.e., within 1/q sec). A spike count code corresponds to
q=0 (i.e., timing is irrelevant).

THE METRIC SPACE  ALGORITHM:
AN OVERVIEW

For each metric (notion of distances between spike trains)...

• Calculate pairwise distances between all responses to all stimuli.
• Construct a response space from the pairwise distances.
• Quantify degree of clustering via the “confusion matrix”
• Repeat the above for each metric

stimuli responses
pairwise

distances

Step 1

Information (H) = row entropy + column entropy - table entropy

Strong clusteringWeak clustering
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responses
are grouped

1 1 1

1 2

1 1 1 1

2

assigned stimulus

ac
tu

al
  s

tim
ul

us 1 1 1

2 1

1 3

2

assigned stimulus

ac
tu

al
  s

tim
ul

us

most nonzero
entries are diagonal

H is high

most nonzero entries
are off-diagonal

H is low

Step 3

Step 2

METRIC SPACE METHOD FOR
SINGLE-NEURON RESPONSES MULTI-NEURON RESPONSES


