INFLUENCE OF SYMMETRY ON FACE DETECTION

Rebecca M. Jones, Mary M. Conte, and Jonathan D. Victor
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065

INTRODUCTION

- Symmetry and faces are highly salient in visual processing and ethologically significant (Chen et al., 2007; Kanwisher et al., 1997; Norcia et al., 2002; Saunders & Knill, 2001).
- Processing of symmetry and face perception interacts. Photographs of symmetric faces are preferred and perceived as more attractive compared to less symmetric faces (Perrett et al., 1999; Rhodes et al., 1998). Symmetry detection is enhanced for upright, normal faces compared to inverted, contrast-reversed faces (Rhodes et al., 2005).
- In previous studies, symmetry and face-likeness were not manipulated as independent variables. When stimuli were constructed in a manner that allowed symmetry and face-likeness to be varied independently, symmetry detection was enhanced for face-like images and there was no inversion effect (Conte et al., SFN2006). So therefore we ask...

METHODS

Participants:
- 6 R-handed females, avg. age 25 yrs, corrected to normal visual acuity; 2 were raters of face-likeness

Procedure:
- ~ 500 practice trials
- 2800 experimental trials/participant

Variables:
- Symmetry (0.2 - 0.6, 0.6 - 0.8, 0.8 - 1.0)
- Face Ratings (1.41-1.67, 1.67-1.97, 1.97-2.36, 2.36-4.0)
- Presentation Time (100 or 400 ms)
- Orientation (upright or inverted)

“Choose the image that is most face-like”

Rating the Images - 10 participants (5M, 5F) rated over 11,000 images as face-like on a 4-point scale (1 = least to 4 = most face-like). The overall ratings were derived from the 1st factor of missing-data principle component analysis. Each participant’s ratings strongly correlated with the consensus rating.

STIMULI DESIGN

Symmetry was quantified by mixing different proportions of check pairs. 12.5% of the stimuli were one group of checks, 39.4% another, 50% a mixture of both. Symmetry was manipulated by mixing different proportions of check pairs.

RESULTS

Fraction Correct

<table>
<thead>
<tr>
<th></th>
<th>N = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ms upright</td>
<td></td>
</tr>
<tr>
<td>100 ms inverted</td>
<td></td>
</tr>
<tr>
<td>400 ms upright</td>
<td></td>
</tr>
<tr>
<td>400 ms inverted</td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis: ANOVA

Main Effects	F	p
Symmetry | 28.941 | < 0.001 |
Face Rating | 236.29 | < 0.001 |
Time | 18.566 | < 0.001 |
Orientation | 0.058 | > 0.05 |

Interactions | Symmetry * Time | 3.682 | < 0.025 |
	Symmetry * Face Rating	4.633	< 0.001
	Face Rating * Time	8.047	< 0.001
	Face Rating * Time * Symmetry	5.203	< 0.001

Post-Hoc Analyses
- Errors were not systematic. They occurred equally in all conditions.
- There were no differences in accuracy for participants who rated more than 2 times.

REFERENCES

CONCLUSION

When symmetry and face-likeness are manipulated as independent variables, symmetry interferes with discrimination of face-like from non-face-like images at the featural (parts-based) level, and has no effect at the configurual (holistic) level.

Supported by NIH EY7977