Difficulties Inherent in the Use of fMRI for Communication with Severely Brain-Injured Subjects

Jonathan C Bardin 1, Joseph J Fins 2, Nicholas D Schiff 3, Henning U Voss 4

1Department of Neuroscience; 2Weill Cornell Medical Center; 3Department of Neurology and Neuroscience; 4Citigroup Biomedical Imaging Center
Weill Cornell Medical College, New York, NY

Introduction

fMRI of mental imagery tasks has recently been successfully used to demonstrate functional communication in severely brain-injured patients (Monti et al., 2010).

ROI-based methods focusing on supp. motor area (SMA) have been primarily used to measure responses to commands and questions using motor imagery.

Little is known about the generalizability and variance of these methods.

We investigated potential differences in results obtained from ROI and whole-brain methods, as well as possible dissociations between behavioral and neuroimaging measures of volitional activity.

Methods

Three-part paradigm:

Command-following

- Command-following
- Binary-choice communication
- Multiple-choice communication

10 normal subjects and 6 brain-injured subjects were scanned (3 longitudinally). Etiology of injury, diagnosis, CRS-R scores, and fMRI results are shown in the table (bottom center). Both whole-brain and ROI analysis methods were used.

Normal Subject Results

All normal subjects tested showed task-related BOLD activity in the SMA during the command-following, binary-choice, and multiple-choice tasks when analyzed with both ROI and whole-brain methods (example shown above, ROI results shown at top right in bar graph).

ROI vs. Whole-Brain Analysis Results for Command-Following Task

Evidence of Dissociation Between Behavioral and fMRI Results

Table of Results

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age/Gender</th>
<th>Injury</th>
<th>TI</th>
<th>CRS-R</th>
<th>fMRI</th>
<th>Behavioral</th>
<th>Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57F</td>
<td>Med</td>
<td>17</td>
<td>16</td>
<td>MCI</td>
<td>NO NO NO</td>
<td>NO NO NO</td>
</tr>
<tr>
<td>2</td>
<td>62F</td>
<td>Stroke</td>
<td>12</td>
<td>14</td>
<td>MCI</td>
<td>YES NO YES</td>
<td>YES NO</td>
</tr>
<tr>
<td>3</td>
<td>61M</td>
<td>Med</td>
<td>10</td>
<td>15</td>
<td>MCI</td>
<td>YES NO YES</td>
<td>YES NO</td>
</tr>
<tr>
<td>4</td>
<td>58F</td>
<td>Stroke</td>
<td>10</td>
<td>14</td>
<td>MCI</td>
<td>YES NO YES</td>
<td>YES NO</td>
</tr>
<tr>
<td>5</td>
<td>59M</td>
<td>Stroke</td>
<td>10</td>
<td>14</td>
<td>MCI</td>
<td>YES NO NO</td>
<td>YES NO</td>
</tr>
<tr>
<td>6</td>
<td>60M</td>
<td>Med</td>
<td>10</td>
<td>15</td>
<td>MCI</td>
<td>YES NO YES</td>
<td>YES NO</td>
</tr>
<tr>
<td>7</td>
<td>62M</td>
<td>Stroke</td>
<td>10</td>
<td>14</td>
<td>MCI</td>
<td>YES NO YES</td>
<td>YES NO</td>
</tr>
</tbody>
</table>

Highlighted rows show clear dissociations between behavioral and fMRI results.

S2 can follow commands and communicate outside of the scanner using head movements, but was unable to communicate using mental imagery in the scanner.

S4 was able to follow commands outside of the scanner on visit 1 and follow commands and communicate outside of the scanner on visit 2 using spoken language, but was unable to follow commands or communicate using mental imagery in the scanner on either visit.

Conclusions

1. While an ROI-based approach captures responses for all normal subjects, significant variation in the activity patterns of some severely brain-injured subjects suggests that a whole brain analysis may be preferable.

2. Dissociations between the ability to perform basic command following and communication tasks outside of the scanner and the ability to perform these mental imagery tasks may significantly complicate the ability to interpret negative or intermediate results from fMRI measurements.

3. At present, these methods are not optimized to capture the true cognitive abilities of the severely brain-injured population.