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Fixational Eye Movements (FEMs)

Functions

Oculomotor Strategy for Temporal Coding Visual Space

Figure credit: Rucci, Ahissar, and Burr (2018) Trends Cogn Sci.

Microsaccade
Saccades with amplitudes smaller 
than 0.5 deg. Typical rate 1-2 times 
every second. 
Ocular drift 
Slow eye movement within the foveal range. Typically < 1 deg/s

MOTIVATION

Do FEMs Have Influence on Perception? 

MODEL 

Eye positions   X(τ) and Y(τ) (measured at Rucci lab)

Contrast ramp R(τ)

Visual pattern

Retinal stimulus

Receptive �eld model: center and surround each with separable 
spatial (F) and temporal (G) components. (Rucci et al. (2000) J. Neurosci.)

Visual Inputs

Neural Responses at the LGN level

(c: center, s: surround)

Spatial pro�le (Fc and Fs): 2D circular Gaussian distribution

Temporal pro�le (Gc and Gs): a series of low-pass and high-pass stages 

Spatial and temporal parameters (K, A, σ, D, Hs, τs, τL, NL) are taken from 
experimental recordings in macaque monkeys and typically di�er for center 
and surround. (Benardete and Kaplan, 1997, Visual Neurosci., Benardete and
Kaplan, 1999, Visual Neurosci.)

Firing rate of individual cell: linear model followed by recti�cation

indicates recti�cation, where

K is the strength and σ is the radius

Decision Model
Single neuron

Multiple neurons

S: stimulus, r: response

If ri and rj are the responses from two cells, 
the probability can be estimated as follwing: 

log likelihood ratio of Sk vs. non Sk 
from all cells

 

RESULTS & NEXT STEPS

Performance of Individual Trajectories

Performance of individual cells and a population of cells

Interim Conclusions

Next Steps

Interim Conclusions

Next Step

F(x, y) = Ke (x2 + y2 )
2 2

G( ) = Ae iwD 1
Hs

1+ i s

1
1+ i L

NL

It is known that eliminating drift movements selectively impairs 
sensitivity at high spatial frequencies. To understand the 
in�uence of FEMs on a trial-by-trial basis and visual 
discrmination, a simulation model is needed. The model we built 
tests the extent to which di�erent eye movement trajectories 
in�uence discrimination performance, helps to understand the 
roles of di�erent classes of LGN neurons in making use of FEM 
dynamics, and formalizes a link between �xational eye 
movements, neural activity, and behavioral responses.
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The bene�t of speci�c trajectories are 
predicted to be task dependent.

Performance on Different Discrmination Tasks

Experimental data collection to study 
whether control of FEMs would enable 
FEM trajectories to adapt to the visual task.

Microsaccades          
� Spatial selection
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OVERVIEW

•  We assume neurons are conditionally independent
•  Estimate the confusion matrix by evaluating the 
   summation of log likelihood ratios of all cells 

Main steps:
1. Reduce the dimensionality by 
    principal component analysis (PCA)
2. Identify the optimal linear 
    discriminator by Fisher discriminant
3. The decision is based on maximum 
    a posteriori probability (MAP) 
    computed by Bayes rule 

Interim Conclusions

Next Step

The model makes predictions about 
the retinal basis of performance 
based on (1) number of cells 
(2) cell types (3) cell locations

Simulate with cell hybrids to 
determine the role of spatial and 
temporal di�erences between M 
and P cells in making use of FEM 
dynamics

The model predicts trial-by-trial 
e�ect of FEM trajectories on 
performance. The bene�t of 
speci�c trajectories are 
predicted to be substantial.

1. Experimental data collection 
    to compare the experimental 
    and modeling results 
2. Investigate the charactistics 
    of “good” and “bad” 
    trajectoriesFig 2. (A) Performance of individual trajectories. The mean performance of all 

trajectories are shown by the dashline in gray. (B) Example trajectories super-
imposed on the stimuli. The size of images are in 2 degrees.

Fig 3. (A) Performance of letter E and F discrimination of individual cells. The 
colors represent fraction corrects. (B) The performance of the summation of a 
numbers of cells and its mean fraction correct and standard errors. Similar results 
was found when using different letter pairs.

Fig 4. Scatter plots of the performance of different FEM 
trajectories while discrminating different letter pairs. Each dot 
represents the performance of one trajectory from a population  
of 30-50 randomly sampled M on cells.

Fig 1. Firing rates of an M cell for an 
example FEM trajectory, with 100 examples 
of noise backgrounds.
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BACKGROUND

Our research goal is to understand the impact of �xational eye 
movements on perception. To this end, here we develop a 
computational model of the e�ect of �xational eye movements 
on trial-by-trial neural signals and visual discriminations.

Characteristics 
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Ocular drift
� Feature extraction
� Remove statistical redundancy from natural scenes

I(x, y) = image(x, y)+ noise(x, y)
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p(Sk | r) =
p(r | Sk ) p(Sk )
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