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Information-theoretic analysis of active bi-antennal sensing for olfactory navigation
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Introduc�on
To meet the challenge of olfactory naviga�on, organisms typically use pairs of sensors and also ac�ve sensa�on (e.g., antennal 
mo�on or sniffing). Ac�ve sensa�on can modify the spa�otemporal characteris�cs of the olfactory environment even before it is 
sensed: it can influence the region of space that is sampled, it can produce a local mixing of odor concentra�ons within this region. 

To explore the u�lity of these strategies, we combined an informa�on-theore�c approach with measurements of the spa�otemporal 
characteris�cs of real plumes. The informa�on-theore�c analysis determined the mutual informa�on between odor concentra�ons 
at a pair of sensors, and rela�ve loca�on of the sensor pair to the plume source.  We focused on how this mutual informa�on varied 
with coding strategy, and how the op�mal coding strategy depends on the olfactory environment. 
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Informa�on-theore�c strategy

A: Odor concentra�on is measured at mul�ple grid loca�ons 
(triangles) within a dynamic odor plume. B: Since the odor 
concentra�on varies with �me, each loca�on yields a distribu�on of 
odor concentra�ons. The large histogram shows the distribu�on of 
odor concentra�ons across all grid points; the two smaller 
histograms show the distribu�on of odor concentra�ons at two 
example grid points.

C-F: Evalua�on of coding schemes. C: Grid loca�ons have equal a priori 
probability. D-E: An odor sample obtained at a randomly-chosen grid 
point (D) is encoded into a word that represents a discrete range of 
odor concentra�ons (E). Several alterna�ve discre�za�ons are 
considered. F: For each code word, the a posteriori probability of 
loca�on within the grid is computed via Bayes Theorem. For each 
discre�za�on, we compute the Shannon mutual informa�on between 
loca�on and code word. Modified from Boie et al. 2018.

To extend this strategy to analysis of 
bi-antennal sampling, each loca�on 
within the plume (A) is sampled by 
le� and right sensors, oriented 
across the plume. The histogram of 
odor concentra�ons at each 
loca�on (D) becomes a bivariate 
distribu�on, and discre�za�ons of 
the odor concentra�on range into 
coding intervals (E) become 
discre�za�ons of a two-dimensional 
distribu�on of odor concentra�ons 
into coding regions (see Results, 
upper le�). 
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Rather than a�empt to model the details of how antennal movements interact with olfactory plumes, 
we considered an abstrac�on, in which individual odor samples represented a Gaussian-weighted 
average of a region of space. Size and separa�on of the Gaussian samples were varied parametrically. 
We also considered models in which the region sampled by each antenna did not cross the midline.

Computa�onal Methods
Par��oning the coding space

via dynamic programming

To op�mize the par��oning of coding 
space, we started with a dynamic 
programming algorithm, illustrated 
above.  Briefly, mutual informa�on was 
computed for all subdivisions of coding 
space into adjoining rectangles (first 
two rows), and this library was used to 
determine the op�mal par��oning into 
larger numbers of rectangles.  The 
op�mal Mondrian-like par��oning was 
then refined by a Metropolis (1953) 
search algorithm applied to small shi�s 
of the boundaries of coding regions.

Op�mizing the par��oning
Mutual informa�on was computed between samples of odor concentra�on and 
loca�on, at 49 sites in a 7 x 7 grid within each plume.

Ac�ve sampling was caricatured by local mixing at a pair of sensors.
 • Sensor separa�on varied from 1.5 to 46 mm.
 • Mixing volume was a Gaussian of radius 0.74 to 23 mm.
 • We considered interpenetra�ng Gaussians (shown), and Gaussians that were   
  truncated at the midline (not shown).
Informa�on-theore�c details.
 • We par��oned the space of paired odor concentra�on samples (cLe�,cRight)   
  into a fixed number of code words (2, 4, …, 64).
 • For each number of code words, we iden�fied the par��oning (i.e., the coding   
  scheme) that maximized the mutual informa�on between the sample loca�on   
  and code words. 

From BugGuide.net, https://bugguide.net/node/view/1919451 

Antennal shapes

Heatmaps show the informa�on about source 
loca�on transmi�ed by a pair of sensors that average 
the odor concentra�on via local mixing. Informa�on 
generally increases with increasing mixing radius and 
with increasing sensor separa�on, but for the 
bounded-flow (diffusive) environment, informa�on 
is lost for the largest mixing radii or sensor 
separa�ons.  The bo�om row compares informa�on 
transmi�ed for sensor volumes that mix across the 
midline, vs. those that remain separate. Separate 
volumes are favored for small sensor separa�ons and 
in the bounded-flow (diffusive) environment, but 
mixing across the midline can be favorable in an 
unbounded-flow (turbulent) environment.

Summary and Conclusions
Combining bi-antennal sampling with ac�ve sensing 
has considerable advantages for odor naviga�on.

• Informa�on about source loca�on is maximized 
by joint encoding of a pair of odor concentra�ons.

◦ For turbulent plumes, the op�mal coding 
strategy signals the presence of a high 
concentra�on at either sensor, without regard 
to sensor iden�ty.

◦ For diffusive plumes, the op�mal coding 
strategy signals the signed difference between 
the odor concentra�on at the two sensors. 

• The benefit of two sensors increases with 
increasing sensor separa�on.  

• Mixing the local environment prior to sampling 
increases the amount of informa�on, and for 
turbulent plumes, mixing across the midline can 
be beneficial.
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An odor surrogate (acetone made
neutrally buoyant by mixing with air and
helium) was isokine�cally released into a
wind tunnel at the center of its entrance.
Turbulence was induced by an entrance
grid (6.4 mm diameter rods and a 25.5
mm mesh spacing, followed by a 15 cm
long honeycomb sec�on). Fluorescence
was induced with a 1 mm thick light sheet
from a Nd:YAG 266nm pulsed laser.
Fluorescence, propor�onal to acetone
concentra�on, was imaged using a high-
efficiency sCMOS camera. Modified from
Connor et al., 2018.

Spa�otemporal Measurement of Odor Concentra�ons in a Turbulent Air Plume Five Olfactory Environments Heat maps
show average odor intensity (first column), and
snapshots of odor intensity on the first and last
frames of data collec�on (last two columns);
note that the color scale is logarithmic and
covers a concentra�on ranging from 1 (equal to
the inlet concentra�on) down to 0.003. For the
bounded dataset, a false-floor was placed just
under the release point. For the obstacle
dataset, the obstacle is indicated by the gray
square in the plume centerline, and the region of
the plume that could not be imaged because of
this obstacle is indicated by the hatched
parallelogram below the centerline.Spa�otemporal odor distribu�ons were obtained via planar laser-induced fluorescence 

measurements of real plumes. We analyzed plumes with realis�c advec�on speeds (5-20 cm/s), with 
and without a nearby boundary.     •Spa�al resolu�on: 0.74 mm pixels    •Temporal resolu�on: 30 Hz    
• Region size: 216 x 406 pixels (160 x 300 mm).

Experimental Methods

Results - Influence of ac�ve sensing via local mixing
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Results - Coding strategies
Op�mal coding of bivariate
odor distribu�on
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Le�: Encoding paired samples of odor 
concentra�ons to maximize informa�on 
about source loca�on. For the bounded-flow 
(diffusive) environment, code word 
boundaries lie primarily along the diagonal, 
indica�ng that the side-to-side difference in 
odor concentra�on is informa�ve.  For the 
other environments, many code word 
boundaries delineate high odor 
concentra�ons, indica�ng that intermi�ent 
high-concentra�on transients are 
informa�ve.  Axes indicate odor 
concentra�on in quan�les. 

Right:  Analysis of bi-antennal coding as a 
func�on of the number of code words.  
Upper curve: informa�on transmi�ed by the 
op�mal par��oning of the paired odor 
samples into 2 to 64 code words (par��oning 
for 24 code words is shown on le�).  Lower 
curve: informa�on transmi�ed if sensor 
iden�ty (L vs R) is ignored.  The large loss for 
the bounded-flow (diffusive) environment 
indicates that the sign of the le�-minus-right 
difference is informa�ve.  Abscissa indicates 
the number of bits required to transmit the 
code words with (open circles) and without 
(closed circles) lossless compression. 

Bi-antennal coding
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