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INTRODUCTION

• We present a novel method of spatiotemporal signal 
analysis that exploits the dynamical relationships 
among underlying signal generators

• A hierarchy of temporally dependent generators is 
obtained from the spatiotemporal signal

• The method is applied to the analysis of human ictal 
EEG data and the derived “neural generators” are 
characterized by their non-linear dynamics

RATIONALE

PRINCIPAL COMPONENTS ANALYSIS
Principal components analysis (PCA) is a general approach to represent a spatiotemporal signal 
as orthogonal components.  The components are ordered by the amount of signal variance they 
represent, thereby reducing a high-dimensional signal to only a few meaningful dimensions that 
can explain most of the variance.  However, in the process of resolving orthogonal components, 
PCA ignores any dynamical relationships between the underlying signal generators.

• An M-channel spatiotemporal signal with N time points, X (M x N), is approximated by a 
second spatiotemporal signal Y (M x N), where Y consists of linear combinations of P
orthogonal “principal components.”

• Y = CTWT
• C (P x M) are spatial weights, T (P x N) are temporal weights (components), and

W (P x P) is a diagonal matrix (the eigenvalues) whose elements, squared, are the 
amount of variance explained by each principal component (PC).

• RPCA = tr[(X-Y)(X-Y)T] (the unexplained variance between X and Y) is minimized

The motivation for our analysis of spatiotemporal data is to remedy a 
shortcoming in principal components analysis (PCA), namely the non-
uniqueness of the extracted components.  We model the dynamic relationships 
between principal components using a multivariate extension of the standard 
linear autoregression (MLAR), and apply a novel hierarchical decomposition 
(HD) to address the drawback imposed by PCA.  A detailed discussion of this 
approach follows.

• The resolved temporal components, T, are represented by an MLAR model obtained 
through minimization of the square of the residual values in the model, RMLAR
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•

• Each one of s matrices Al contains regression coefficients that describe the linear 
relationship between a component p and all components q at l time lags in the past.  
s is statistically determined by the Akaike criterion (AIC; Akaike 1974).
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MULTIVARIATE LINEAR AUTOREGRESSION
As noted, the dynamic relations among the underlying generators are overlooked by PCA.  In 
order to make use of these relationships, we created multivariate linear autoregressive (MLAR) 
models of the first P components.

• Search for the rotation M that simultaneously triangularizes, as best as possible, all s
regression matrices A (P x P), and apply the result to the PCs.

• A'tri = MTAM
• T′rotated = MTT

HIERARCHICAL DECOMPOSITION
Here, we introduce the hypothesis that the observed spatiotemporal data set reflects a 
hierarchically dependent set of underlying generators.  Since the set of all regression coefficients, 
A, characterizes the signal dynamics, we sought rotations of the PCs that were consistent with a 
hierarchical interrelationship of the autoregressive coefficients across components.  The 
hierarchical relationship among generators corresponds to a triangular form for all matrices A.
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•

• A'tri = Ji,j(θk)T… J3,2 (θ2) TJ2,1 (θ1) TAJ2,1 (θ1) J3,2 (θ2) … Ji,j (θk)
• M = J2,1 (θ1) J3,2 (θ2) … Ji,j (θk)

•

HIERARCHICAL DECOMPOSITION
The HD method obtains the rotation that most nearly triangularizes all matrices A – and thereby 
transforms the components T into hierarchical form – through application of sequential, modified 
Jacobi rotations, J.  The standard Jacobi rotation is a plane rotation about a pair of axes i,j 
designed to zero the element Ai,j; the modified Jacobi rotation applied along axes i,j minimizes 
the sum of squared elements below the diagonal (the residuals for the HD, RHD).
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A rotation exists which achieves RHD = 0 for a single matrix only when the eigenvalues of the 
matrix are all real (Mirsky 1990).  In general this rotation will not simultaneously achieve RHD = 
0 for a second matrix.  Thus, the rotation M that “triangularizes” A is that which minimizes RHD.

The minimization of RHD is analogous to a multi-dimensional gradient descent.  Since it is 
possible to get stuck in a local minimum, it is necessary to begin the search from numerous 
places in the rotation space.

Graphical Representation of the

JACOBI MINIMIZATION
Figure 1.  Simultaneous Jacobi minimization of two 3 x 3 matrices, A1 and A2.  Multiple searches 
are necessary to ensure that the global minimum for RHD has been found.  Solid points denote the 
first Jacobi rotation (applied along the 2,1 axis pair) in the repeating sequence: J2,1, J3,2, J3,1.  Red 
points denote Jacobi rotations that did not lead downhill (and therefore were not applied).
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Global Search in a

3-D ROTATION SPACE
Figure 2.  In three dimensions a global search for the triangularizing matrix is practical.  A three-
dimensional rotation space for matrices A1 and A2 of figure 1 is represented here as concentric 
spherical shells.  For any three-dimensional rotation, we determine the rotation angle θ and the 
rotation axis; the rotation angle determines the radius of the spherical shell, and the axis 
determines the position on that shell.  The colors on the spherical shell correspond to the values 
of the residuals RHD induced by application of the corresponding rotation.  The deep blue-colored 
area in B (θ = 1.3 rad) corresponds to the global minimum.  There is a light yellow-green local 
minimum nearby, centered on shell C (θ = 1.4 rad) but also visible on shell B (θ = 1.3 rad).  
There is a saddle separating these minima, and descent methods may stabilize on either side of 
this saddle.  All features are visible but less prominent on shell A (θ = 1.1 rad).
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APPLICATION TO ICTAL EEG
Although the ictal electroencephalographic (EEG) records of temporal lobe 

and absence (petit mal) seizure patients appear quite distinct, similarity among 
their clinical features suggest shared underlying mechanisms.  The non-linear 
autoregressive analysis (NLAR) introduced by Schiff et al. (1999) provided 
support for this idea.  NLAR “fingerprints” obtained from absence EEG traces 
and those obtained from the PCs derived from temporal lobe EEG records 
shared evidence of nonlinear interactions at long time lags (ca. 90, 150 msec).  
However, the PCs that showed these interactions accounted for only a small 
amount of the variance in the data (less than 12%).  We applied hierarchical 
decomposition to these records to determine the dynamical relationship of the 
sources of nonlinearity to the overall EEG record.

Quick Tour of the
NLAR ANALYSIS

The near-Gaussian character typical of background EEG activity (Elul 1969) is not maintained 
during an epileptic seizure.  Linear autoregressive (LAR) models are therefore insufficient to 
account for the qualitative features of an ictal discharge.  The NLAR analysis augments an LAR 
model by evaluating the importance of individual non-linear terms in signal prediction.

• An NLAR model for an EEG trace is achieved by minimizing the residuals RNLAR, a process 
analogous to solving the Yule-Walker equations (Yule 1927; Gersh and Yonemoto 1977).

•

• b are linear coefficients, c are non-linear coefficients
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• An NLAR model for an EEG trace is achieved by minimizing the residuals RNLAR, a process 
analogous to solving the Yule-Walker equations (Yule 1927; Gersh and Yonemoto 1977).

•

• b are linear coefficients, c are non-linear coefficients
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The NLAR fingerprint is obtained by constructing a contour plot of the N∆V/V for each non-
linear coefficient cl,m, added individually to the autoregressive model above.  V is the unexplained 
variance, and ∆V is the improvement in the model associated with a single term cl,m (For further 
details on NLAR analysis see, Schiff et al. 1995a; Schiff et al. 1995b.)

• Adding a new model term always decreases residual variance, but at the “cost” of increasing 
the model’s dimension.  Victor and Canel (1992) extended the Akaike criterion (AIC) to 
NLAR models containing a single non-linear term, as a means of statistical justification.

• N∆V/V > 2 corresponds to the AIC, and N∆V/V > 4 implies the more strict condition
P < 0.05, i.e. that the improvement in the model associated with cl,m  is greater than 
expected from chance.

THE NLAR FINGERPRINT
Figure 3.  Similarities between NLAR fingerprints from (A) absence epilepsy and (B) the 5th PC 
from temporal lobe epilepsy (patient 1).  Note the peaks in the region of 9, 15 lags (corresponding 
to 90, 150 msec), and 15, 15 lags (corresponding to 150, 150 msec).  Maximum N∆V/V values are 
quite large for both fingerprints.  Figures adapted from Schiff et al. (1995a) and (1999).
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PATIENT 1 NLAR FINGERPRINTS
Figure 5.  Comparison between the temporal lobe ictal NLAR fingerprints for the PCs and the 
rotated components.  Note the maintenance of important peaks around 9, 15 lags (90, 150 msec), 
15, 15 lags (150, 150 msec), and the exposure of absence-like peaks near 1, 10 lags (10, 100 
msec) that are present in the autonomous rotated component (1st) and the principal hierarchically 
rotated component (2nd).
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METHOD OVERVIEW
Figure 4.  Multichannel data analysis.  The PCs (B) derived from temporal lobe epilepsy (patient 
1) EEG (A) are rotated according to their MLAR derived hierarchical structure (C).  The NLAR 
fingerprints for all components are generated and summarized by their maximum N∆V/V (D).
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PATIENT 1, SEIZURE 1 SUMMARY
Figure 6.  The variance and maximum N∆V/V for all components in the multichannel data 
analysis of temporal lobe epilepsy.  Hierarchical decomposition has concentrated the non-linear 
signals in the first three rotated components.  The top three hierarchically rotated components 
account for greater than 55% of the variance and exhibits a strong non-linear signal dependence.

PATIENT 1, SEIZURE 2 SUMMARY
Figure 7.  The variance and maximum N∆V/V for all components in the multichannel data 
analysis of temporal lobe epilepsy.  Hierarchical decomposition has exposed a significant non-
linear signal dependence in the autonomous rotated component (1st) and explains about one fifth 
of the original signal variance.

Figure 8.  The variance and maximum N∆V/V for all components in the multichannel data 
analysis of temporal lobe epilepsy.  Hierarchical decomposition has intensified the non-linear 
signal dependence in the second rotated component, which concurrently is found to account for 
an increased amount of the variance (ca. 23%).

PATIENT 2, SEIZURE 1 SUMMARY

CONCLUSIONS
• Hierarchical decomposition (HD) exploits the inherent relationships among 

the numerous channels of data available in a spatiotemporal record, and 
separates autonomous and hierarchically dependent components of the 
signal. The results of the preceding multivariate spatiotemporal data 
analysis suggest that the combination of PCA and HD may provide a 
method for the resolution of underlying signal generators, thus permitting 
improved signal characterization.

• With respect to the analysis of seizure EEG, this method has allowed us to 
resolve a hierarchical relationship among the intrinsic neural “generators”.  
This reveals similar dynamics between the driving nonlinearities that 
contribute to temporal lobe epilepsy EEG, and those apparent in absence 
seizure EEG – even though the driving nonlinearities may sometimes 
constitute only a small portion of the variance.

• This finding provides strength for the suggestion by Schiff et al. (1999) that 
some patients with temporal lobe epilepsy may share common neural 
circuit disturbances with those of absence epilepsy.

Akaike, H.  A new look at statistical model identification. IEEE Trans Auto Control, AC-19, 716-723 
(1974).

Elul, R.  Gaussian behavior of the electroencephalogram: changes during the performance of a mental 
task.  Science, 164, 328-331 (1969).

Gersh, W. and Yonemoto, J.  Parametric time series models for multivariate EEG analysis.  Comp 
Biomed Res, 10, 113-125 (1977).

Mirsky, L.  An Introduction to Linear Algebra.  Dover Publications, Inc.  New York (1990).

Schiff, N.D., Labar, D.R., and Victor, J.D.  Common dynamics in temporal lobe seizures and absence 
seizures.  Neuroscience, 91(2), 417-428 (1999).

Schiff, N.D., Victor, J.D., Canel, A., and Labar, D.R.  Characteristic nonlinearities of the 3/s ictal 
electroencephalogram identified by nonlinear autoregressive analysis.  Biological Cybernetics , 72, 519-
526 (1995).

Schiff, N.D., Victor, J.D., and Canel, A.  Nonlinear autoregressive analysis of the 3/s ictal 
electroencephalogram: implications for underlying dynamics.  Biological Cybernetics, 72, 519-526 
(1995).

Victor, J.D. and Canel, A.  A relation between the Akaike criterion and reliability of parameter 
estimates, with application to non-linear autoregressive modeling of the ictal EEG.  Ann Biomed Eng, 
20, 167-180 (1992).

Yule, G.U.  On a method of investigating periodicities in disturbed series with special reference to 
Wolfer’s sunspot numbers.  Philos Trans R Soc Lond A, 226, 267-298 (1927).

REFERENCES

ACKNOWLEDGEMENTS
The authors would like to thank Mary Conte, Robert DeBellis, Ferenc Mechler, Keith 
Purpura, Danny Reich, and Jeff Tsai for the invaluable advice that helped us present this 
research in a clear and comprehensible fashion.  Special thanks to Steve Kalik, whose 
expert advice was available at all stages of the project and all hours of the night.  This 
research was graciously supported by the Lederman Family Foundation and the 
Biomedical Engineering Program of Cornell University.


