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e Many aspects of human vision are tuned to the characteristics of its - - T a R
y | P | | o All images were created using Python (OpenCV and Numpy libraries) and Java. All analyses were carried out using Python (Matplotlib)
natural inputs, including global statistics (power spectrum) and local p N Global Statistics
stat|§t|cs (m.ultlpomt correlations) | Occl :on Model Power Spectra 5 D Power soactrs Spectral slopes
e Medical radiographs have a steeper spectral slope and a different CCIUsSIO oaels e Each image was windowed with a Gaussian P
pattern of local statistics. - / | o e The Fourier transform was taken and the SR 1‘j° SRR T I S —— | | a= D 2 | a=3 e Three of the models (_O(?Z, OC3, TP2)
e Natural images and radiographs are formed by different physical o BRI i amplitudes were squared Ca=1 | . a=3 N i = | . . ngufﬁf,:;aé:;oﬁeg)Slgllaar_tzo hatof
processes. As a consequence, occlusion is typical in natural 2D (OC2) e Average sq.uared amplitudes were computed % g R ~ass | =l =110 e The steeper Spectral’ slope of
iImages; transparency is typical in radiographs. We used the standard dead leaves gcrosts tlhel mage set ted aft dial ® oz &1024 1P 13 ~ 19 80 [)adiTogzra?hS (72'7 tc; -f3) VTV?% Cfa ptu|r|ed
e However, the role of these differences (as well as others) in shaping model (Ruderman, 1997), with ¢ ©Spectral Siope was compued after radiat ® o o | em | =m | =m yl (for a=1), and for TP3, for a
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Spherical objects were rendered Generate a model image o | Generative mOdSe’S o Deviat e \ -
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object’s reflectance drawn uniformly
Natural image N from [0,1]. The illuminant was
Y located behind the viewer.

Downsample by factor of N
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Bone Radiographs (Ajayi, VSS 2023)
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Transparency Models

To investigate the basis of differences in image statistics between 9 y
natural images and radiographs, we built simple generative models
and compared their statistics. Generative models differed in:

Crop windowed portion

Binarize with respect to R (patch size)

2D (TP2) ~
Occlus , For the regions of overlap between the median pixel value R (patch size)
* Occlusion vs. fransparency : - - - . - | _
. Dimensionality (2D vs 3D objects) circles, thfe transparency |§ the f Mean correlations — represent overall characteristics of each image set Standard deviations of correlations — represent the patch-to-patch differences in
. . e product O thg transparepmes of the . statistics and what is needed discriminate among images within a set
» Object size distribution overlapping circles. The image e The pattern of mean values of the correlations depended on all aspects of the model:
p N Cﬁnt_raft W?_S inverted after adding o~ < occlusion vs. transparency, cﬁmensmnahty, and size distribution. | e Standard deviations had a similar ordering for all models.
IMAGE PROPERTIES EXPLORED 3rac\:l:/rr(]: 3rs]i.forre:1rl18p;re:)rrenn[c(:)le1&‘i were o = Xy ; or ook e o For.all. variants of .the occlusion model, the mean value of the cardinal second-order e Standard deviations had a similar dependence on scale (N and R) for all models.
N J 4 T ik Sk S - = statistic was the highest | S | e The 2-point cardinal standard deviation was slightly higher than the others in most
1) Occlusion vs. transparency: We used the dead leaves model 3D (TP3) TP2 Image (a = 2) e ° ]Icn the T2P moder:.s,r;thethea? correl1at|ons depended on size distribution: correlations models, and there was little separation between 2-point diagonal, 3-point, and 4-point
. - : or a = 2 were higher than fora = 1. .
(Ruderman 1997) to model occlusion and a variation (Zylberberg, The Beer-L ambert Law was Used Cutinto R x R patches J correlations.
2012) to model transparency. to calculate the intensity at each Comparison with natural images and radiographs Comparison with natural images and radiographs
2) Dimensionality: We generated scenes with 2D objects (circles) pixel, based on the path length Calculate 2, 3, 4 point correlations for each patch e In natural images, 4-point correlations have the highest mean, followed by 2-point e In natural images, 2-point cardinal correlations have the largest standard deviation,
and 3D objects (spheres), randomly positioned. through the spheres. Density was cardinal, diagonal, and 3-point, In bone radiographs, 4 pt correlations have the highest followed by 2-point diagonal, 4-point, and 3-point, corresponding to human visual
3) Size distribution: Radii were drawn from a power-law distribution drawn uniformly from [0,1]. mean, followed by approximately the same means for 2-point cardinal, 2-point diagonal, sensitivity (Hermundstad et al., 2014; Victor and Conte 2012).
p(n=kr "9, within a range. We examined a=1, 2, or 3. Thickness was calculated by Calculate means and standard deviations across and 3-point correlations (Ajayi et al., 2023) e In bone radiographs, 2-point cardinal correlations have the largest standard deviation.
I'hndmghthe Ifength of ;c]he (_3ht0rd In patches e None of our models could account for the pattern seen in natural images or in 2-point diagonal and 4-point are about the same, and 3-point is the smallest.
e sphere from each point. : . - _ - : oL . .
[ Ref } P P radiographs: in our model image sets only TP3 for a = 1 accounted for the high 4-point e None of our models could account for the standard deviations of correlation seen in natural
ererences Y correlation, but it failed to account for the lower order correlations. images or radiographs.
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